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INTRODUCTION

In this report we shall be concerned with that broad field of experimentation,

generally referred to as sensitivity testlnq_ in vhich each test is characterized

by a quantal response. To some sample specimen or realization of a system one

or more stimuli are applied and the result is either a "response" or a "non-

response", depending on vhether some critical physical threshold was or was not

exceeded for that particular sample. The aim of most sensitivity experiments

is to describe one or several aspects of the distribution of these critical

levels for a population of specimens or systems as a function of the stimulus

variables.

Sensitivity testing has been widely employed for many years in connection with

the development and evaluation of explosives, propellants, detonation devices,

and armor-piercing projectiles. Perhaps its earliest implementation was in

biological studies of dosage mortality and response to drugs. More recently,

sensitivity experiments have been employed in the evaluation of new materials

subject to stress in various environments, and in delineation of unstable com-

bustion regions in chemical propulsion systems. Although the applications have

been diverse, quantal response experiments generally have many characteristics

in common. Two basic problems are invariably encountered: (1) the constructlom

of suitable test apparatus which provides a convenient yet also realistic frame-

work for the evaluation of the response of a specimen or system to representati%

stimuli; and (2) the experimental planning or design of actual test programs, al

the statistical analysis of the resulting quantal response data. Even though

the first of these questions arises in most practical situations, the nature of
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the solution dependssignificantly on the details of the particular application,

and weshall have nothing more to say in these pages in this connection.

Fortunately, there is muchthat can be said about the planning and analysis of

sensitivity experiments which has general applicability in many different situ-

ations, and it is to this question that we shall direct our full attention.

The statistical design and analysis of quantal response tests is in many respects

quite different from the analogous treatment of classical factorial experiments.

In the latter, the responses at a given treatment combination are generally con-

tinuously distributed, and often the effects of a great many independent variables

are simultaneously evaluated. But in sensitivity testing, the results of each

test fall into one or the other of two qualitative categories, and attention is

usually restricted (until recently almost exclusively) to studying the effects

of a single independent variable (stimulus or stress) at a time. Despite these

apparent limitations, sensitivity experiments possess several redeeming features,

not the least of which is the ease with which they permit the utilization of

sequential planning techniques. Sequential planning, that is, establishing the

precise conditions under which a particular test is to be conducted on the basis

of previous test results, is attractive to most experimenters and permits the

implementation of relatively efficient statistical methods. Generally speaklmg_

the mathematical tools which in recent years have been used to develop new

designs and analyses for sensitivity problems have been developed in the field

of stochastic processes, often with these problems directly in mind. However,

these newer more efficient methods have been implemented only to a very limited

degree; sensitivity testing is still conducted using familiar experimental

design and analysis techniques which are, often unknown to the experimenter_

in many cases relatively inefficient.
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This report is an attempt to remedy this situation by making a variety of newer

and/or more efficient planning and analysis procedures available to the sensi-

tivity experimenter in a form which is hopefully suitable for direct implementa-

tion. In order to accomplish this, we have separated experimental designs and

analysis procedures into different sections. Since in many cases several

methods of analysis can be used in conjunction with a single design,and vice

versa, this separation should permit the user to take full advantage of the

many combinations at his disposal. The procedures themselves are presented in

the style of a manual.

but brief form,

For the latter,

open literature,

this report.

All the rules and iLmitations are given in a complete

with only a few comments concerning mathematical Justification.

the reader is referred either to specific references in the

or in the case of the newer methods, to appendices included in

It has been the authors' experience that one of the reasons many experimenters

have not taken advantage of recent developments in the design and analysis of

sensitivity experiments has been the lack of qu_.ntitatlve information on which

to base a selection of a particular method for a given problem. Inmost cases

mathematical comparisons of experimental designs and analysis procedures are

very difficult, and one is forced to resort to simulation or Monte Carlo tech-

niques. Several limited studies of the latter t)_e have previously appeared in

the literature, and their results have been partially summarized in the present

report. In addition, an extensive simulation has recently been completed at

Rocketdyne _hich permits a satisfactory comparison of many of the newer methods

_ith those already in use. The general conclusions that can be drawn from all

these s£mulations are rePorted below in the discussions of individual design
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and analysis methods. Details of the general Rocketdyne simulation are given

in an appendix.

It goes without say__ng that the selection of an appropriate procedtu_e for

designing or an,41yzlng a sensitivity experiment depends on the experimenter's

ability to provide a clear formulation of his objectives and on the assumptions

and constraints which underlie the testing. In order to assist in this process

_'e have included a section called "Types of Sensitivity Problems" in which the

major classes of sensitivity experiments are reviewed. Included are discussions

of the inverse response problem, programs for the discrimination between

response fu_nctions, selection of a response function, estimation of the psram-

eners in a response function, ranking response functions, testing for mono-

_oniclty of the response function, and, finally, safety and reliability evalua-

tion programs.

Although a claim of completeness cannot be made, we have attempted to include

(1) all those recently developed design and analysis procedures which appear to

have merit for general applications, and (2) those methods which have already

fcund wide use in the field.

Many of the procedures in the latter category are based on a specific asst_ption

concerning the form of the response function (e.g., cumulative normal), and are

relatively efficient only when the goal of the tests is to estimate the behavior

of this function near the median or mean. Recently, much attention has been

given to the problem of estimatir4 portions of the "tails" of these response

functions, that is, stress levels with either very small or very large response

probabilities. Several methods of this type have been included in this report.



In addition, there has beena growing recognition of the difficulties of making

proper assumptions about the type of response function being sampled, and more

significantly, the serious effect incorrect assumptions of this type can have

on the efficiency of the design and analysis. This has led in recent years to

the development of several distrlbutlon-free design and analysis procedures

which assume generally only that the response function is nondecreasing with

increasing stimulus. These are given considerable attention in the text.

Although methods for handling sensitivity experiments with several stimuli are

discussed, we shall consider situations in which there is only a single observable

quantal response. There do not appear to be methods available for handling the

multi-response situation, except in very special cases (see Ref. 29).

Many of the methods we describe for the analysis of quantal response data

require only a minim_n of calculation on a slide rule or desk calculator. In a

few cases, however, (e.g., general maximum-likellhood procedures) the use of a

large electronic computer is almost mandatory. A few FORTRAN computer codes

which have been prepared to handle these situations are described and listed in

an appendix. Copies of these program decks will be made available to interested

users. A brief description of the general Rocketdyne simulation program is

also provided.

Finally, it must be pointed out that, although the authors have taken considerable

pains to present methods for the design and analysis of a great variety of sensi-

tivity experiments, it will be clear to the user of this manual that the basic

orientation is towards those situations generally encountered in engineering

research and development programs. This bias seemed unavoidable, due to the



limitations of the experience of the authors and the necessarily limited size

of this report. It is hoped that readers of this manual will find procedures

which in their present form are suitable for implementation to the problem at

hand. If not, the reader is encouraged to construct his own designs supplement-

ing the ideas and techniques given below with his own.



SECTION II

TYPES OF SENSITIVITY EXPERIMENT_

PART A - GENERAL CONSIDERATIONS
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II-Al. ASSUMPTIONS ABOUT _HE "IATURE OF THE RESPONSE FUNCTION

The selection of a procedure for conducting a sensitivity experiment and

analyzing the test results depends significantly on the amount of informatlom

the experimenter possesses about the type of response function from which he

is sampling. Generally speaking, if the experimenter has had extensive previous

experience with the test apparatus and specimens he is employlng,*it should be

possible to select a specific type of cumulative distribution for the response

function (e .g., normal, log normal, uniform). It may be necessary in this

connection to transform the stimulus variable(s) before simple distributional

forms can be assumed (see Section IV-AS). (In some cases it may even be pos-

sible to establish good a priori estimates of the parameters of the assumed

distribution, such as the mean and standard deviation in the normal case .)

When distributional assumptions are Justified, the improvement in the quality

of the design may be significant (see Section II-BI).

Unlike some other types of experimental designs (e .g., factorial) and analyses

(e .g., regression), sensitivity procedures depend critlcal_ o_ the

accuracy of the distributional assumptions. Thus, for example, if it is assumed

that a response function is cumulative normal when it is really, say, uniform,

then the design and analysis chosen will be satisfactory only when the mediam

response (that is, the 50 percent stimulus level) is of primary interest, w,

other regions, corresponding to small or large response probabilities, highly

inefficient designs and inaccurate analyses will result. Thus, generally

speaking, a parametric approach should be selected only after an extensive

a_otunt of previous experience and completed data analyses are available.

*or if he is able to find a model for his process, as in Ling and Hess (Ref. 21).
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Since this is often not the case, and moreover, since many sets of sensitivity

data clearly are not consistent with the classical response function forms, it

becomes necessary to employ dlstribution-free (or nonparametric) methods. Most

generally, one assumes only that the fraction response distribution at a given

stimulus level is binomial and that the true response probabilities are monotone

nondecreasing with increasing stimulus. (The question of monotonicity is further

discussed in Section II-B4.) Although distribution-free designs generally

require more tests and permit less powerful analyses, there are several which

are surprisingly efficient - even in some cases closely rivaling parametric

procedures (see, for example, Section III-B6). The relative efficiency of the

two approaches depends among other things on which portion of the response

function is of particular interest. Near the 50 percent level, both are

generally effective. In the tail regions below O.O1 and above 0.99, inaccurate

assumptions about the form of the response function generally have a deleteri-

ous effect. Recently developed nonparametric methods can be quite effect%we

in these regions and are to be desired in all cases where substantial informa-

tion about the response function is not available.

For very low (< .O1) or very large (> .99) response probabilities, the sample

requirements of a purely dlstrlbution-free approach may be forbidding, yet

extreme sensitivity to the selection of the form of the overall response function

virtually prohibits the use of completely distributional methods except in certain

special circumstances. For example, the existence of even a small percentage of

defective items, or "duds," in a population which otherwise has a cumulative

normal response function, may lead to badly biased est _izates in the tails. To

handle such problems, which occur more and more frequently of late in connection

with safety or reliability studies, a hybrid "tailvise parametric" approach has

recently been formulated: assumptions concerning the form of the response
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function are madeonly in some probability interval which contains the very

small (or very large) response probability of interest. Nothing is assumed

about the behavior of the response function outside of this range. Unfortu-

nately, such techniques have not been explored in practice to any extent, nor

to our kncwledge, have they been evaluated by simulation. Consequently, it is

possible only to outline these tailwise parametric procedures which is done in

Section II-B1 below.

Another approach to the study of the tails of the response function is to imple-

ment the techniques of accelerated or overstress testing by incorporating one or

more additior_l stimulus variables. If, for example, one is interested in the

value of a s_imulus variable (stimulus "A") corresponding to a very low response

probability (e.g., .OO1) one can conduct a series of experiments in which in

addition to A a second stimulus ("B") is employed at levels which will assure

at least a few responses in a reasonable number of tests. Stimulus B may or

may not be a realistic physical excitation for the item being tested, but the

responses it helps produce through interaction with the stimulus A must be of

the type of interest to the experimenter. If this multivariate sensitivity

experiment (see Section III-B9) can be efficiently designed, and in particular

if the interaction between the stimuli can be characterized, then the originally

required ir_fo.--mationconcerning the stimulus A can be recovered by appropriate

analysis _ relatively fewer tests than if a multivariate experiment were

conducted.
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II-A2. COSTS OF SENSITIVITY DCPERIMENTS

In this section we shall briefly discuss a few of the major cost factors that

generally arise in the selection of a plan for sensitivity experimentation.

Some of these are self-evident and quite commonly considered; others are

occasionally overlooked. In principle, all should be carefully evaluated

before selecting the design and analysis procedures.

a) Cost of specimen or item being tested and expense of running the test.

This is perhaps the most obvious of all costs and naturally provides a limiting

factor on the total allowable sample size.

b) Cost of data analysis. The majority of distributional and essentially all

the distributlon-free design and analysis procedures do not require extensive

computation expenditures. The major exception is the maximum-likelihood analy-

sis method which requires a large digital computer for practical implementation.

Scme procedures are more readily carried out than others, however, and in a few

cases computation time may be a factor. The effect is prirmrily through the

time delay between successive tests required to carry out the more complex

techniques. This increases the total elapsed test time which may itself intro-

duce additional costs.

c) Cost of having a response occur. When the items being tested are expensive

or _heir response may cause local d__zzge (e.g., an explosion), it may be

desirable to select an experimental design which will lead to fewer responses

even if this compromises the quality of the data analysis, i
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d) Cost of having a nonresponse occur. In some situations it turns out to be

more expensive to cope with a nonresponse than with a response. For example,

in tests of electrical initiators, the specimen must be rendered harmless after

a nonresponse, and this may take considerably more time than disposing of an

item which has already been activated. Here an experimental design which limits

ncnresponses may be p_fe_b!e.

e) Costs dependent on the level of the stimulus variable(s). In many sensi-

tivity experiments, the cost of a particular test depends significantly on the

level of the stimulus (or stimuli) applied. If, for example, this cost increases

significantly with increasing stimulus, then an experimental design shoul_ be

selected which limits the number of high stimulus level tests and which makes

sure that those performed are as efficient as possible. If the cost dependence

on the level of the stimulus is known ex_lieltly, it may be possible to use this

information in deriving an "optimum" design (see Section II-A3).

f) Effects of batch size on specimen preparation costs. In certain sensitivity

experiments, one or more of the stimulus variables are inherent in the specimen

itself (e.g., configuration factors, composition) rather than in the set-up of

the test apparatls. In designing sequential tests with such items, therefore,

preparation of the specimens must be accomplished also in a sequential manner

as stimulus levels for subsequent tests are established. A program of this type

can be very costly, and it may be necessary to prepare at least several speci-

mens at a time (batch preparation); similar economies may be possible through

simultaneous testing (batch testing). Information which relates the cost per

item as a function of the batch size will assist in the preparation of an exper-

imental design in such cases (see Section III-AI).

13



g) Costs arising from the number ,_f stimulus levels which are to be permitted

during testing. From the experime--al design point of view, it is desirable to

be able to test at any level of the stimulus variable in some specified interval.

This may be very expensive, however, and require substantially more sophisti-

cated test apparatus. Consequently, experimental designs which limit testing

to a few specified stimulus levels may often be desirable.

14



II-A3. LNFO_[ATION, LOSS FUNCTIONS, _D OPTIMUM EXPERIEENTAL DESIGNS

In this section we describe briefly a macroscopic approach to the design of

sensitivity experiments based on cost considerations. The method is directed towards

the planning of large scale complex sensitivity exyeriments (e.g., those with several

stimulus variables) and results in the establishment of broad design characteristics

w,,,_ the ^-_ ...._ plan must satisfy. _' long as they are consistent with such re-

quirement% detailed experimental plans can then be implemented. Our purpose here is

simply to mention the macroscopic viewpoint and point out some of its virtues. All

our attention in this report will be directed towards specific detailed designs and

analysis procedures. Those interested in implementing the cost optimization view-

point may find further details given in Ref. i.

Broadly speaking, the experimenter's objective is to find a program plamwhich

balances the costs described in the previous section against the cost quality of

the ultimate test results. In order to relate these two factors quantitatively it

is necessarj to introduce the notion of information and attempt to evaluate the costs

of "misinformation".

The usual approach is to define inforn_:ion as the inverse of some appropriate

average variance of all the estimates of response function characteristics which are

of interest. This varianc_ and thus the information, depends on the experimental

design. Next the major cost factors' (see Section II-A2) dependence on the experi-

mental design is represented in terms of appropriate cost functions. These would

include, for example, the explicit effect of stimulus level on cost (if one exists)

and the costs of responses and nonresponses (if these are different). The latter

would have to be included as expected costs (depending on the design), since the true

response probabilities at various stimulus levels are generally not known in advance.

15



Finding the cost of misinformation (that is, a cost which is directly proportional

to the variance of the estimates of interest) is generally a difficult task, but

partial answers are sometimes possible. For example, in the "safety" evaluation

of current excited detonators by sensitivity testing one seeks an estimate of that

current level below which a detonation is, with very high probability, unlikely to

occur. Errors in the estimates of this level will be carried over to the system

design and will result either in more frequent accidental detonations and

damage to the system, or in expensive overdesign to provide unnecessary safety.

A "loss function" is then constituted which contains two terms: the cost of experi-

mentation and the cost equivalent of the information to be generated, both as a

function of the experimental design. Finally, the loss function is studied to find

that experimental plan which minimizes the total cost. Generally this optimization

cannot be obtained in closed mathematical form and computer search procedures may

be necessary. Often this entire procedure is feasible only if large sample theory

is used to express the cost of misinformation. The resulting design is then said

to be "asymptotically optimal".

It is interesting to note that in many cases only very broad characteristics of the

optimum design are specified by this procedure (e.g. the mean and variance of the

stimulus levels at which testing is to be conducted, or perhaps just one or two

response probabilities whose corresponding stress levels should be converged to in

the course of the experiment).

16



II-A4. E_PERDLENTS WITH MORE THAN ONE STIMULUS VARIABLE

Until very recently, available methods for the design and analysis of sensitivity

experiments have been limited to the case in which there is only a single stimulus

variable. For a great many situations univariate methods are quite satisfactory,

since experimental conditions often can be so controlled as to limit the effects of

all variables except one selected for stud_.

In other cases, however, this may not be possible, or what is more important may

not be desirable, and an experimental design and analysis involving several stress

variables is required. There are essentially two types of multivariate experiments;

i. Those with a single stress variable and one or more environmental variables.

2. Those with several stimulus variables (and perhaps one or more environmental

variables).

In the former case, information about the effect of the single stimulus variable on

the probability of response is desired under a variety of combinations of the environ-

mental variables. Problems of this type can be handled by combining univariate sen-

sitivity procedures with ordinary factorial design and analysis methods. An exanple

of this approach is given in Ref. 2.

If there are several stimuli whose effect is of interest, then a multivariate sen-

sitivity approach is indicated. Recently developed methods for handling such problems

are given in Section III-B9 and IV-B7.

Alternatively, truly multivariate sensitivity experiments may be handled (althou_h

perhaps less efficiently) as in problems of type I by combining factorial desigas

with univariate sensitivity methods. One singles out one of the stimuli (for reasons

of cost, ultimate program objective, etc.) and considers the others as "enviroa-

mental" variables. Examples of this approach are given in Refs. 1 and 2 and will

17



not be considered f_Arther in this report.

Theexperimenter should be alert to the possibility of additional "hidden" stimulus

variables in apparently univariate sensitivity experiments. A methodof testing

for suchvariables whentheir levels are uncontrolled and unccrrelated with the

knownstimulus variable is given in Section IV-BII.

18



SECTION II

TYPES OF SENSITIVITY EXPERIMENTS

PART B - SPECIFIC CLASSES OF PROBLF_
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II-BI. INVERSE RESPONSE PROBLEMS

a. Introduction

The most commonly encountered type of sensitivity problem is that of finding at

what level of the stimulus variable a given percent response will occur. For

example, in biologlcal assay it is often necessary to determine the dose

(called LD 50 or ED 50) which is effective half the time, or in testing explo-

sives, it is often of interest to find the stress that results in a detonation,

say, 95% of the time. In each of these situations we are concerned with invert-

ing the relationship which gives the probability of a response as a func_iom of

the stimulus; thus the te._ninology (probably due to J. W. Tukey) of the "Inverse

Response Problem".

The general problem can be stated more precisely as follows: let x be a

stimulus variable and let the probability of a response for a given x be

M(x) . Then, for a given probability 0 < _ < l, we wish to determine that

value of x, x_ such tP_t

= a .

The proper choice of design and analysis procedures for inverse response problems

depends on two factors: (1) whether assumptions concerning the form of M(x)

can be made, or whether a distribution-free approach is required, and (2) the

value of 5. We first consider the distributior_l question.

b. Form of M(x) Known

When distributional assumptions are appropriate, many experimental design and

analysis procedures are available which lead to esthetes* of the distribution

*_Auro_ghout this re_ort we shall use the notation "x"

of the quantity "x".

2O
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parameters. Thus, theoretically, the entire distribution can be described and

the solution of the inverse response problem is available for any _. In

practice, however, such results are generally useful only when _ is close to

•5, and become increasingly less satisfactory for very small and very large

values of _, unless the distributional form and prior estimates of its param-

eters can be completely relied on. In the latter case, Chernoff has derived

"asymptotically optimal designs" (Ref. 4) when the response function is normal,

for all a (see Section III-A4). However, "the efficiency of these designs for

small samples and small _ has not been extensively evaluated.

Of co,Arse even for u near .5, the distribution of the estimates of the

response function parameters depends on the experimental design and those

detailed specifications (e.g., level of first test, step size in up-and-down

procedures) which must be selected in advance. The optimum choice of these

design parameters depends on the assured distribution. (For example, the step

size for the Bruceton up-and-down design should be close to a, the standard

deviation, if a normal distribution is assuaged, and the initial test should be

as close to _ as possible.) Unless the experimenter has some previous results

on which to base his choices of design parameters, they will generally not be

close to those values leading to the most efficient experimental design.

'l'nerefore, a good design should be self-correctlve, i.e., capable of overcoming

poor choices of the preselected design parameters.
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Onegoodprocedure which can be usedwith a distributional analysis for

near .5 is the "delayed" Robbins-Monrodesign (Section III-B5); this design

compensatesfor a poor choice of initial test level, and the choice of the other

design pars.meterturns out not to be critical. Further, both the design and

analysis are quite simple. The up-and-downdesigns are generally useful also

in this connection, again for (z near .5. In particular, the Bruceton or

up-and-downprocedurehas simple design rules and a straightforward analysis

method(Section III-B1). But, while the Bruceton procedure compensatesfor a

poor choice of initial test level, the choice of the fixed step size can sig-

nificantly affect the quality of the estimate of x(x. Whenthe response func-

tion canbe assumedto be normal, it is possible to select asymptotically

optimal designs by meansof the theory of Chernoff (Ref. 4 ). Theseprocedures

are summarizedin Section III-A4.

c. The Distribution-Free Case

Without ass_otions on the form of the response function to relate the response

probability at various stimulus levels, information obtained by testing at one

level gives little information about the response probability at any other.

For example, kno-_i__ x.5 tells us nothing about the value of X.os; if we

assume that the response function is monotone nondecreasing with increasing

stimulus (see Sec%ion II-A1), then ';e may conclude that X.o 5 < x.5 , but that

T,_ 'I

is all. While mcnotonicity, generally, only _oosely relates the response

fractions at different stimulus levels, it can be used effectively if a great

many tests are con__entrated in a sr_ll interval. Thus, for distribution-free

designs a major objective is to concentrate the test levels as near to xa as

possible. Ho'; easily this can be done depends on the value of a. We distinguish

three cases :
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Distribution-Free Designs When _ ~ .5

When _ ~ .5, it is not difficult to verify that most tests are in a neighbor-

hood of xs, since approximately equal numbers of responses and nonresponses

will occur in such a region. Thus, there are many distribution-free designs

which are reasonably efficient in this case. Since in such designs the initial

test level must be chosen in advance, go_r__ desi_s should, as before, ccmpez_ate

for a poor cholce. Suggested designs for this problem are the delayed Robbins-

Monro Design (Section III-Bt), the Alexander Design (Section III-B6), the

Rot _hman Design (Section III-B14), and the Split-the-Difference Design (Section

III-B13). All except the Rothman Design have simple design rules and straight-

forward analysis procedures.

Distribution-Free Designs for u ~ .05 or ~ -95

As the value of _ tends to zero or one, it becomes more difficult not only to

estimate x_ but even to determine some interval or region containing it.

%'ithout distributional assumptions, it is necessary to perform a great mam_

tests in this region to obtain a reasonable estimate of x_. Thus, a suitable

design for this case must not only correct for a poor selection of the first

test level, but also conZinually force the successive test levels to remain in

a nei_.borhood of x_. The Alexander Extreme Value Design and the Rothman

Design have been formulated explicitly to handle this problem and appear to be

very efficient (Sections III-B6 and III-B14).

Dis_ributlon-Free Designs for _ ~ .C1 or ~ -99

For sach extreze values of a, a great zany tests are required before the

expert.enter can have any assurance that he is even close to x_. If a large
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number of tests can be tolerated, the Alexander or Rothman Designs can be used.

If, as is more generally the case, cost and time considerations limit the

sample size, then a procedure based on a tailwise parametric assumption (see

below) should be used. Since the Alexander Design, and to a lesser extent a

stochastic approximation design for the _ = .05 case, provide a great many

tests at levels below X.o 5 (see example at the end of Section III-B6), using

one of these designs and a tailwise parametric analysis may be satisfactory.

d. The Tailwise Parametric Case

We next consider the problem of estimating x(x for very small _ (e.g.,

(_ < 0.01) or very large _ (e.g., > 0.99), by means of a tailwise parametric

approach (see Section II-AI). Our discussion will be preliminary and brief,

since this method has not been fully developed, and more importantly, has not

been applied in practice nor evaluated by simulation.

We consider the case of small values of a; completely analogous remarks can be

_nde in the complementary situation _%en a is near unity. First we establish

a response probability interval (0,_) in which a form for the response proba-

bility as a function of the stimulus is to be assumed. Choice of the upper

limit _ depends on _ and in how wide an interval the experimenter can rely

on his assumption; for a = 0.01, for example, _ might be taken as 0.2; for

= 0.001, _ might be 0.i. We say nothing about the behavior of the response

function in the interval (G,!). Next we assume a model for the response

function over the domain of response probabilities less than _. Polynomial,

exponential, or perhaps doubly exponential models can be considered, in addition

to those usually assumed.
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Phe experimenter now chooses a design which would place most of the data in

this region of the response function (e.g., Section III-A_). When testing is

complete, an_ data which seem to be outside of this interval are elimlr_ated;

finally, the remaining data are analyzed by conventional means.

There are several open questions that arise in applying this tailwise parametric

approach. First, of course, is the selection of the model. This may not be as

critical as it seems; however, the quality of the estimate of x_ should

not depend significantly on the form chosen because only a local model is being

employed. Secondly, the quantitative influence of the choice _ needs to be

evaluated. As _ increases one is forced to apply a model over a wider and

wider interval (_ = 1 corresponds to the fully parametric case), which is

generally undesirable. On the other hand, for _ too small, estimation of x_

in a reasonable number of tests may be difficult. A procedure for establishing

the optimum choice of _ which balances these effects awaits formulation.



II-B2. DISCRIMINATINGBETWEENRESPONSEFUNCTIONS

In manytypes of sensitivity experiments it is desired to comparethe response

functions of two or morematerials or devices. In quality control testing, for

example, production batches are sampled to see if the response function of the

current lot matches some standard response function. This is roughly the technique

for armor plate production, where projectile penetration ("ballistic limit") tests

are used for quality control (e.g., the requirement might be of the form, 0 pene-

trations in 5 tests under x = 2000 ft/sec). A similar situation is found in

materials testing (e.g., 0 responses out of 20 trials at some specified height

of the impactor) and in squib production (i Amp, no-fire; 2 Amp, fire).

Another class of problems in which it is desired to discriminate between response

functions is in the development of new materials or devices, where each new version

is tested to see if it has been improved sufficiently to meet certain specified

standards. Such a problem occurs in sensitivity testing of newly developed explo-

sives, where the explosive must be able to withstand the ordinary stress of handling

and transportation, no matter what other properties it has.

This type of experimental situation often has been treated as simply a binomial

comparison problem; that is, the test item is compared to the reference at only one

stress level. Generally this is not the most efficient way to test against a

standard. A better design would be one in which tests were made at those levels

which, based on previous data in the test sample, seemed to have the most promise

for demonstrating a difference between the test material and the standard. Such

designs are given in Sections III-BlO and III-Bll, but have not yet been evaluated

by simulation.
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_nother important problem encountered in sensitivity testing is to determine

whether several samples of data are consistent with a single response function.

For example, we may ask whether data from different lots of a production device,

different manufacturers of a device, or different formulations of a material_

or even from identical materials on different impact testers, are consistent

with each other. This situation arises when there is no commor_y accepted

standard or when there is a danger that the reference has been obtained under

environmental conditions which are different from those of the experimenter.

One example of this type of discrimination problem has occurred in programs to

develop liquid rocket fuels with less tendency towards combustion instability

(here the stress variable is the amplitude of an intentional pressure distur-

bance). Othe_ examples are those programs in which chemical additives are

incorporated in a basic explosive formulation which is then tested to see if

any are promising in reducing sensitivity.

At _uy step of such a test program, the material to be tested might be thought

of as one population, and all other materials which have not yet been shown to

be different from it might constitute a second population. Within this two-

sample framework, designs are given in Sections III-BlO and III-Bll (as above,

these designs have not yet been evaluated by simulation).

Tests of hypothesis corresponding to all of these problems are given in Section

IV-B5.

Sometimes _he problem is not to find any difference which may exist between

the response functions, but rather to test the null hypothesis that, for a
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certain _, x is the same for both response functions (i.e., they inter-

sect at • ). In this case oze would test each population as for the _-

inverse response problem, and then compare the two estimates of • as in

Phase V of the analysis procedure given in Section IV-B1.
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II-B3. ESTIMATING ._ND RANKING RESPONSE FUNCTIONS

In some sensitivity problems the aim is to find estimates of the unknown parameters

of the response function M(x), or perhaps functions of these parameters. For

example, if the response function is assumed to be cumulative normal with parameters

and a, then an objective of the experiment might be to estimate some function

f(u,a) such as _ + ka, with k specified. It should be emphasized in this

connection that it is in a certain sense not enough to have as an experimental

objective the independent estimation of _ and _. Such problems are not "well-

posed" in the sense that the optimum procedure, or the choice of any desirable

design and analysis method for that matter, depends on the relative importance of

the estimates of _ and a in the experimenters objective.

Such estimation problems may occur if there is a response function parameter which

is of particular interest. For example, the standard deviation a in the case

above, or a scale parameter in general, may be a measure of repeatability or control,

and therefore may have independent interest apart from the response probabilities

themselves. Or, as in the model given by Ling and Hess (Ref. 31), one of the param-

eters may correspond to a threshold or "zero activation energy" which is of par-

ticular physical significance. Asymptotically optimal designs (in the sense of the

variance of the estimates) for such problems generally resemble designs for an

inverse response problem. For example, if the response function is cumulative

normal and an estimate of a is desired, then an asymptotically optimal design

is one which is asymptotically optimal for the

x = ,L+ ka, as _ approaches I (i.e., as k

inverse response problem,

becomes infinite).

To our k_ucwledge, the "threshold" problem has been solved only in the special case

of a step response function; the first few tests of optimal designs for one-, two-,

three-, and infinite-sample experiments are given by Marks (Ref. 18), and these
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results are approximated in the "split-the-difference" design (Section III-BI3).

Often the experimenter has no interest in the actual values of the stress function,

perhaps because the stress variables and/or environmental conditions are not those

encountered in the field. In such cases the test objective is only to rank several

materials or devices according their sensitivity to the laboratory stress variables,

and hope that this ranking also applies under field conditions. Even when such

hopes are justified an additional difficulty in this approach is that a material

relatively more sensitive at one stress level may be relatively less sensitive at

another if our assumptions permit the response functions to cross. Yet it is cer-

tainly arbitrary to rank materials according to their estimated response fractions

at a specified stress, or according to the stress levels estimated to correspond

to a specified response probability.

One way out of this dilemma is to assume that all response functions (for the

t

materials in question) are identical except for a location parameter, in addition

to whatever assumption, if any, is made about the form of the response function.

For example, if the ith response function is assumed cumulative normal with param-

eters _i and _i' then this additional assumption would give _i = _' for all

values of i, and the response functions could not cross.

Asymptotically optimal designs for these composite problems are generally zade u@

of individual designs for each response function which are themselves each asymptot-

ically optimal for an appropriate inverse response problem (see Section II-BI). If

the response function is cumulative normal or logistic, Hodges and Lehmann (Ref. 13)

*If Ml(x ) = M2(x-_) , then M1 and M2 are said to differ only by a location

parameter, _.
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have shown that the 50% inverse response problem is the best. Thus the designs for

ranking problems would not differ greatly from those now used in most laboratories.

However, analysis of several sets of data, under the assumption that only the loca-

tion parameters are different, does not appear to have been previously carried out

in practical applications. Indeed, such an analysis is very difficult in the dis-

tribution-free case (which would correspond to an extension of the method of Section

IV-B6) and generally not feasible. But in the distributional case, maximum-likell-

hood procedures for handling a single set of data (as for the cumulative normal

response function in Section IV-B1) may be easily extended to the multi-sample

ranking problem.
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II-B4. TESTING FOR MONOTONICITY

In most physical situations, a natural assumption in testing responses to stress

is that the probability of a response increases monotonically with increasing

stimulus level.* Of course, in experimental situatior, s _he sample response

fractions do not necessarily follow this rule. In small samples, a decrease in

response fraction with increasing stimulus is a problem only in distribution-

free designs, although there are corrective procedures, such as the "method of

reversals," which can be used to obtain monotone estimates (see Section IV-B6).

Generally speaking, non-monotonicity observed in the response function is a

serious question when either a large number of tests b_s been performed at the

stress levels indicatir_ the reversal, or when a sharp decrease in the response

over successive stimulus levels is found. Even in these cases it is first

necessary to determine whether these larger discrepancies can still be attribu-

ted to experimental error or actually indicate a non-monotone function (see

Section IV-Bll where such tests are discussed).

If such a test fails on a reasonably high confidence level, some further explana-

tion for the observed non-monotonicity must be fo-und. One possibility is to

hypothesize the existence of an additional unknown stimulus, which operates inde-

pendently of the known stimulus variable. This situation is discussed in

Section V-B . Ass_mir_ that such a "hidden" stimulus exists yields the inter-

esting result that the -_ariance of the response distribution at any given stress

*Well known exceptions to this are projectile penetration studies, in which the

probability of penetration of some standard armor plate =zy not always increase

as the velocity of the projectile is increased.
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level of the knownstimulus is actually reduced. Thus, this approachis better

suited to explaining apparent mild non-monotoniclties in large sac.pies, rather

than whena sharp decrease in the response fraction is observed with increasing

stimulus. In the latter case, if all experimental procedures have been care-

fully checked, the phenomenon of non-monotonicity may actually exist.
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II-B5. FINDING AND TESTING RESPONSE FUNCTION MODELS

Response function models have traditionally been chosen from those cumulative

distributions commonly used in other branches of statistics, such as the normal,

M(,)
--@J

logistic,

- 1
l+e,n_/,_ '

uniform

O, x<A

M(,)=
x-A A_x_B

or transformationsof these (see Section IV-A5). Sometimes the experimenter has

a "candidate" for a response function which is based on physical considerations,

such as the Ling and Hess (Ref. 31) model,

M(x) = _l-e -_ )ne-X*/xx-X O , • _ X0

Lo p X < Z O , where _, n, Xo, an_ X* are parameters,

or his candidate may be one for which design and analysis procedures are well known,

such as the normal.

If testing and conclusions are confined to a region near the 50% point, x.5, then

the experimenter can hardly go wrong with any model he uses. Thus the normal dis-

tribution is commonly used in these cases without any concern for verification of

the model.
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There are some problems, however, for which sample sizes are prohibitive unless

the experimenter can rely heavily on a response model. If such a situation is

met repeatedly by an experimenter in a certain type of sensitivity testing, he may

wish to choose a model for that type of data once and for all by taking an extremely

large sample of data for one standard material or device. Such data is generally

taken in the ntails" of M(x), since it is in these regions where differences

between response function are most noticable. He then tries to fit different ais-

tributional forms to the data until one of these passes a "goodness-of-flt" test

(e.g., Section IV-BIO); subsequently that form is assumed without question for

similar sensitivity tests.

The difficulty with such exploratory experiments, however, is in posing them properly.

For example, suppose that the experimenter is Eenerally interested in the _ = .OO1

inverse response problem, and would like to know if his response functions are

cumulative normal. If he concludes they are really normal, he will be able in the

future to take advantage of his conclusion by employing an efficient design con-

sisting of a mixture of tests aimed at _ + 1.575a (see Section III-A4).

A design which has been used for exploratory problems of this type is the Bartlett

design (Section III-B2). This design gives a decreasing sequence of tests, and

the experimenter ends the sequence when he estimates that his next test will be

below the level x = _ - 3.O9a,* or when he runs out of tests (cf Hammer, Ref. 32).

But careful attention to the use to be made of the conclusion drawn from the

exploratory program suggests a design which may be better. The experimenter can

mix an asymptotically optimal distribution-free design for the _ = .001 inverse

response problem (a stochastic approximation, as in Section III-A4) with an

*K = -5.09 corresponds to _ = .001
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asymptotically optimal distributional design (a mixture of stochastic approximations

of _ + l.SVSa). The relative sample sizes of the two component designs can be

chosen such that, under the null hypothesis of normality, the estimates of X.OOZ

given by each set of data would have equal variance. Thus the dlstributlon-free

component design would require about 5.6 times as many tests as the distributional

component design.

If there are two candidate response functions, the experimenter would mix in equal

proportions two designs, one for each, of the type given above in the normal case.

One point must be made strongly: if the experimenter does not carefully define the

use he intends to make of his response function, it is difficult to properly pose

his exploration problem.

36



II-B6. SAFETY A/_D RELIABILITY PROBLEMS

There are many situations in which sensitivity experimentation is employed to

estimate the safety or reliability of a device or system. The foyer case is

commonly associated with finding levels of the stress variable which correspond

to very small fraction responses. In reliability problems one is generally inter-

ested in stress levels associated with vs,-7 high fraction responses. S_fety and

reliability problems can be treated as inverse response problems (see Section II-B1),

if it is assumed that the appropriate stress density functions (see below) are "delta

functions m at x (i.e., densities with all their mass concentrated at the solution

of the inverse response problem). The only virtue of such an approach is that it

generally gives conservative estimates for safety and reliability. In this section

we formulate the safety and reliability problems in a more realistic manner.

If M(x) denotes a response function, and if fl(x) denotes the density of the

maximum accidental stresses encountered by a device in a "lifetime" of handling,

shipping, etc., then it is natural to define the safety S, by

as

s --1 -

Similary, if f2(x) denotes the density of actuating stresses, then the reliability,

R can be represented by

. = _._ _(x)f2 (:)d: •

A realistic problem for a sensitivity experiment would be to estimate the safety

(reliability) or demonstrate that it meets a certain specification, given

• fl(x)Cf2 (:))"
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For example,if M(x)

x > _- 4a, then

S : 1 - A e-B(_-Ba2/2).

A design for this safety problem is outlined in Section III-BI6.

is assumed to be a normal odf* and fl(x) = Ae-Bx for

For the extreme response probability values usually associated with safety and

reliability problems, it is hard to see how one could dispense with a distri-

butional assumption on M(x) in selecting design and analysis procedures.

However, this problem has not yet been fully investigated.

If the function fl(x) is completely unknown, then strictly speaking there is

no way of estimating safety. In this case, if there are two or more devices

whose safeties are to be evaluated, the only way of ensuring that one device

is safer than another is to demonstrate that one response function is always

less than another; that is, the response functions do not cross. One way to

approach this is to assume that the response functions are all identical except

for their location parameters, and treat the problem as one of ranking response

functions (see Section III-B3).

If the function fl(x) is imperfectly known, standard methods of error analysis

may be used to find the marginal variance in the estimate of the safety due to

errors in fl(x). For example, in the exponential model given above, suppose

2 2
cA and cB are the estimated variances in our estimates of A and B,

2
respectively. Then the variance GS in the estimate of the safety is given

by

*cdf = cumulative distribution function
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_arZher error terms would be added to this expression in the usual fashion

to account for imperfect estimates of _ and _.
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SECTION III

DESIGNS FOR SENSITIVITY EXPERIMENTS

PART A - GENERAL REMARKS
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III-AI. SEQUF.NTIAL,3LOCK-SEQUENTI%L,OR PRE-SELEC?E3 DESIGNS;

OPEN E.NDED OR FIXED-SA_LE DESIGNS

In choosing a particular design one must be guided by both the experimental

costs (or limitations in the preparation of test specimens) and the efficiency

of the design. The relative importance of the two will indicate which types

of design should be used. In this section we discuss some basic characteristics

of designs for sensitivity experiments which bear on establishing a balance

between these factors.

a. Pre-Selected Designs

In this type of design, also known as one-block or non-sequential, all stress

levels are planned in advance. Since the levels are determined before any

information is available, these designs are usually inefficient and require a

large number of tests. Even a two-block design is generally much more efficient

(see below). However, if considerations such as long lead times, economies of

fabrication or dosage preparation, or unusual delays in observing responses (as

in bioassay) are of greater importance, this type of design may be necessary.

An example is the usual type of probit design (Section III-BI7).

b. Block-Sequential Desiwns

If several tests at a time, but not all, must be planned in advance, then a

block-sequential design maybe used. In this type of design the stress levels

for a given block are not determined until the preceding block has been com-

pleted and all of the results observed. In some cases, both the number of

blocks and the allocation of tests to the different blocks ("staging") are

determined before the start of the experiment, as in the block-sequential and

run-down designs (see below). These choices are made in order to produce the
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greatest gain in information about the parameter to be estimated. It is also

possible to determine the number of tests in the next block, as well as the

stress levels, from the results of the previous blocks.

The tests in any block may or may not be at the same stress level; however,

early in an experiment there is generally a definite advantage in allowing

different stress levels within a block.

c. Secuential

If the stress level for each test is not determined until the result of the

previous test has been observed (and perhaps also analyzed) the design is said

to be sequential. The stress level chosen may depend only on the previous test

and its result, as in the up-and-down design and in the Robbins-Monro process;

in this case the design is a "Markov design". In other designs the stress level

is determized from some or all previous tests, as in the Alexander designs. The

latter type is zore efficient, and a Markov design should generally not be u2ed

unless the experimenter does not have the opportunity for a more thorough analysis

between tests.

If the experimenter is restricted in advance to a certain sample size, the design

is said to be a fixed sample size design, or close-ended. A more desirable policy

is to continue testing until the precision of the estimate(s) meets certain re-

quirements (thus the sample size is a function of the results). In this case

the design is said to be open-ended. While open-ended designs will give better

results, considerations such as cost and availability of materials often necessi-

tate a bo'_ud on the sample size. Most of the designs (stochastic approximation,

Alexander, etcJ in this Eanual are given in open-ended form. They can be used as
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close-ended designs, however, without any modification, simply by te_inating

the experiment at the specified sample size. Strictly speaking, in the close-

ended case there should be a different version of each design for each sample

size, but it is believed that the improvements thereby obtained would @enerally

be rather small, even for small sample sizes.
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III-A2. DESIGNS _RES_RICTED TO CERTAIN TEST LEVELS

There are several reasons why an experimenter might _ant to restrict his test

levels to certain discrete values. In some cases these are the only levels at

which he can test at all (e.g., the card gap test in which there must be an

integral number of cards). In other cases it is convenient to construct test

apparatus which allows for rapid and accurate stress level settings at a few

selected values (e.g., notches every half-lnch for drop testing). Sometimes

the experimenter _nts to be able to perform a simple analysis predicated on

such a fixed level design (e.g., the Dixon-Mood analysis, Section IV-B4, for

the Bruceton design, Section III-B1). Often there is an economy involved in

"tooling" for fabrication of only a few types cf items, when these items have

their "stress" levels built in (e.g., solid propellant critical diameter studies).

All indications are that these restrictions really have very little effect on

most experiments, although there is almost certain to be a noticeable deleteri-

ous effect on efficiency for very large sample sizes. At any rate, the experi-

menter may modify any of the designs given in this 5_anual to conform with such a

design requirement as follows:

the design calls for the next test at stress level s. Let [sj]Suppose

denote the stress levels actually available for experimentation, where

sj < Sj+l, j = i, 2, "'" .

Case I: s = sj, for some J

Simply test at L = sj.
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Case2: sj < s < Sj+l, for some J

Choose a random number y uniformly distributed in [0,i]. If

y g (s-sj)/(Sj+l-Sj) , test at L = Sj+l, otherwise test at L = sj.

This procedure avoids the convergence of the test levels to a single fixed

level, which could occur if the above rules were replaced by the selection of

the fixed level sj nearest to s.
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III-A3. SETTING E_ORS AND MEASUREMENT EBRORS

In many types of experiments there are errors made in controlling the level of a

stress variable or in measuring and interpreting the resulting responses. The

first of these is referred to as a "setting error", and is common, for example,

in projectile penetration studies where the velocity of the projectile (the stimulus

variable) is only specifiable with a standard deviation, say, of 15 ft/sec. The

effect of this error may be described by means of a method given at the end of

Appendix V-B1.

Apart from whatever setting errors may exist there are always measurement errors

in determining what the stimulus level(s) actually was during a tesS. In almost

all cases, however, these errors are very small and can be ignored both in performing

the tests and analyzing the results. In a few cases this may not be the case (for

example, again consider projectile penetration studies where measurement errors are

not small although they are generally smaller than the setting error). _ne effect

of measurement errors may be treated by the methods of Appendix V-BI by thinking

of them as setting errors and assuming that all measurements are made perfectly.

Alternatively when the measurement variance is known it is possible to nodify the

analysis (e.g,, maximum-likelihood estimates) in order to correct for measurement

errors, although the additional calculations are extremely tedious.

Of greater importance is the second problem mentioned. In fact, one of the real

difficulties in sensitivity experimentation is in the interpretation of the test

results. When is a result a response? Did that projectile actually penetrate

the armor plate? Was that sound a detonation or a rapid deflagration? In drop

testing, how should a "second strike" detonation be counted? In lethal dosage

experiments, how should one interpret a severely incapacitated subject7
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One solution in those cases where such questions are not easily answered is tO

allow the experimenter, within certain guide lines, to grade the response subjeo-

tively between 0 and 1 for all doubtful situations. Although we shall not do so,

almost all of the methods given in the Manual may be modified in a straightforward

manner to allow for such graded responses.

Apy
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III-A4. STOCHASTIC APPROXIMATIOH

stimulus

x , of

Stochastic approximation is of interest in sensitivity testing because it is con-

cerned with experimental procedures which converge to a desired value when the

observations being made involve error. Some of these schemes can be applied to

the inverse response problem, which can be formulated as followss If for a given

x the probability of a response is M(x), then we wish to find that value

• such that

M(x

This differs from the analogous classical mathematical problem of finding roots

of equations in that M(x) is unknown and must be estimated on the basis of

random observations with mean value M(x).

Assuming that a unique root exists, Robbins and Monro (Ref. 6) devised an iterative

procedure which converges to x under general conditions which include the inverse

response problem in a special case. It is necessary to assume that M(x) is a

monotone function, continuous in the neighborhood of x .

Since the publication of the original Robbins-Monro paper a great deal of work

has been done on stochastic approximation processes. Most of this deals with

such mathematical topics as convergence, optimal choice of the process parameters,

asymptotic properties of estinators, etc. Very few application of the method have

been made to experimental design problems. More recently, there has been a greater

interest in applying the procedure to experiments with quantal responses. Several

empirical studies have been made and computer simulation evaluations have been used

in order to critically examine the value of using stochastic approximation strategies

under various conditions (see Appendix V-C).
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Stochastic approximation designs for the inverse response problem generally

depend on two parameters which must be chosen before testing begins. In the

non-parametric case, when no assumptions are made concerning the response func-

tion, these are L I, the first test level, and a certain constant, c. When

parametric assumptions can be made, these can be related to the parameters of

the assume_ distribution (for example, under normal assumptions _ = _ - K

(where K is unit standard deviate) and c = 1.253_ where _ and 8 are

'guesses' of the mean ,t and standard deviation a). Xn stochastic approxima-

tion processes the estimate, x , is simply the next test level, and it can be

shown that this is a sufficient statistic converging to • not only in prob-

ability but with probability i. However, for application to the design of

inverse response experiments we are more interested in the estimates for small

samples which will depend on the choice of the design parameters. The more

critical of these is L 1 (or _ in the parametric case) which (as in most designs

for the inverse response problem) is at some a priori 'best guess' of • .

A poor _ess for L l results in the acquisition of a great many tests before a

reasonable approximation to • is found. .%11 of the variations of the original

Robbins-_onro procedure zre concerned with overcoming this deficiency. The

Kesten (Ref. 7) and Odell (Ref. 8) variations have also the more general design

objective of always testing in a neighborhood of • . These questions are discussed

in detail i_ Section III-35. A comprehensive review of stochastic approximation

methods is given in Ref. 15.

If the response function is known to be cumulative normal, Chernoff (Ref. 4) has

shown that asymptotically optimal designs for the inverse response problen are

divided into two classes (see Section V-B6 for details). We consider the inverse

49



response problem for x = _ + k_.

Case i: IKI _ 1.5750360

It may be shown that an asymptotically optimal design is any stochastic approxi-

marion of • = _ + kc; the variance of the resulting estimate is asymptotic to

H= (',')]2N.

where N denotes the sample size. For K = O, H = v_2/2N.

Case 2: IKI > 1.5750360

Here an asymptotically optimal design is a mixture, in the proportions .5+.787518/K

and .5-.787518/K, of stochastic approximations of _ + 1.5750360a and

- 1.5750360_, respectively. The variance of the resulting estimate is asymptotic

to

Thus when Case I obtains, the distributional assumption does not influence the

asymptotically optimal design, since the latter is always a stochastic approximation

.
to x = _ + k_ even in the distribution-free case. If Case 2 obtains, however,

the distributional assumption significantly influences the asymptotically optimum

design since a distribution-free design of this type is still a stochastic approxi-

mation of _ + k_, with the sane variance expression as in Case I, whereas an

optimal parametric design is the mixture given in Case 2. We consider an extreme

example to show how much better the distributional design can be in the latter case.

Consider the nonparametric inverse response problem for _ = .000,000,287 which

*_ny stochastic approximation of • is asymptotically efficient in the distributional

case, whereas it is difficult to _find stochastic approximations which are asymptot-

ically optimal in the distribution-free case.
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leads to an asymptotic variance of 1.3 X IO5_2/N, when the response function is

(unknown to the experimenter) cumulative normal. But if the experimenter can

completely rely on the assumption of normality, he can proceed as in Case 2 for

- 5_, and his asymptotic variance will then be "only" 41J/N.
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III-ASo EFFICIENCYOFDESIGNS FOR THE Ih"IEESE RESPONSE PROBLEM

IN TiE DISTRIBUTION-FREE CASE

In evaluating and comparing designs for the inverse response problem, we would

like to find that one which produces the best estimates in the sense of minimum

variance for a specified sample size. For most designs, an empirical (simulation)

study is required to estimate the variance for various sample sizes, and such studies

are very useful in comparing designs under various conditions. However, in evaluat-

ing the results of simulation, it is desirable to use a standard against which each

design can be measured.

For a class of stochastic approximation designs (which includes the Robbins-Monro),

Hodges and Lehman- obtained an expression for the asymptotic normal Variance. This

variance, when asyaptotically optimum desie-n parameters are used (see Section III-BS),

is given by

=

Hn(:_) [M'(xo,)]2H

)="
dI lX=X

(y

!

where N is the sample size, M (x) is assumed to be continuous at x , and

!

0 < M (x) < _. This is the best presently available theoretical standard for

comparing designs and is extremely useful in the following cases:

i. If for small N, the variance of a design is close to the stands_rd, the design

can be considered efficient.

e If for a reasonably large N the variance of a particular design is, say,

5HN(_ _) the design would be abandoned whereas if it were, say, 1.2HN(_),

the design and possible modifications should be investigated further.
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In using this asymptotic variance stsn_ard, the following limitations should be

kept in minds

I.

e

It is not known in general how large N must be before this expression can

be implemented in practical situations.

further work is completed, an asymptotic variance of HN(X _) does notUntil

imply as_-mptotic optimality of a design, -_'_^"-_......_, t,his is presently believed

to be the case for all distribution-free inverse response problems and for

certain parametric inverse response problems.
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SECTION III

DESIGNS FOR SENSITIVITY EXPERIMENTS

PART B - SPECIFIC DESIGNS

54



III-BI. UP-AND-DOW_ DESIGN

a. Introduction

This most widely known sensitivity design was first implemented at the Explosives

Research Laboratory at Bruceton, Pennsylvania. It is properly used in conjunction

with distributional ass-_ptions for the inverse response problem with _ near O.5.

For normal response curves, Dixon and Mood developed a simple approximate maximum

likelihood method of anslysis (described in Section IV-34), along with analysis

methods for small ss_ples. General maximum-likelihood estimation procedures (Section

IV-A4) can be used when the response function is assu_ed to be other than cumulative

normal. Because of the extensive literature and experience with the up-and-down

design we shall give only a brief description here. Furthermore we shall describe

only a few of the many variations which have appeared. (A related design is discussed

in Section III-BIS.)

One of the advantages of the up-and-down design is the simplicity of its rules.

These are given below assuming that the stress variable has been appropriately trans-

formed (see Section IV-AS).

b. Design Rules

i. Choose a step-size,

2. The first test is at LI, a best a priori guess of x.5.

3. If this results in a response, the next test is at _-d;

the second test is at Ll+d.

4. If the nth test is at L and the result of that test is

d, which will be fixed throughout the design.

n

Ln+l = L d if Yn I.

if it is a nonresponse

Yn' then
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5. The design generally can be considered open-ended; special termination rules

such as "stop after K changes of response" are often used in practice.

The two parameters, d and L1, of the design must be chosen in advance. The

conventional choices are as follows: for no.'-zalresponse curves, h " _ = x.5

and d = o; for logistic response curves, L1 = x.5 and I._ _ d _ 2. A poor

choice of L1 results in a greater number of tests.(The design will, in this case,

have an initial series of all responses or all nonresponses and these tests should

generally not be used in the analysis (see Section IV-B4)_. The asymptotic prop-

erties of the design depend heavily on d, and the variance of the estimate of

x.5 increases sharply as d becomes large. However, if d is very small, them

the choice of LI becomes more critical, introducing appreciable bias if it is

far from x.5.

It should be emphasized that this design is effective for the inverse response prob--

lem only for _ near .5.

c. Variations

The following two variations have been introduced to overcome poor choices of LI

and d. They are both improvements of the original design but their relative merit

is unknown.

Two-stage Design (Cochran and Davis, Ref. 9)

I. Perform..an up-and-down design with d = 1.25a until a change of response occurs.

2. Let LI be the midpoint between the two last levels. With L1 as the first

test level, use either with a Robbins-Zonro design with c = 1.25o (see

Section III-B5) or an up-and-down with step size _.
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Wetherill Design, (Ref. 5)

1. Use an up-and-down test with step-size o until 5 changes of response have

occurred.

2. Change to an up-and-down design with step-slze i/2a.

d. Up-__nd-Down Design for Delayed Observations

If there is a delay before the result of a test is known, a saving in time can be

obtained by running several small independent up-and-down sequences simultaneously

rather than one long design. A small sample analysis method such as that of Brownlee

et al. (Section IV-B4) can be used in this connection. There appears to be no appreci-

able loss of efficiency if, for example, a 40-test design is broken into four series

of 10 tests, provided that a good guess for _ is made at the outse%.

e. Evaluation of the Up-and-Down Basic DesiKn for

Inverse Response Problem

'Inen a step-size of d = o is used, as is generally recommended, the variance of

the estimator for the inverse response problem for

totically (Ref. 12) by

x = _ + K_ is given asymp-

Var (_ + KS) - (2.02 + 3.75K2)J/N .

The relative asymptotic efficiency of this basic up-and-down design for various

inverse response problems, relative to the optimum results of chernoff summarized

in Section IIIA-4, is tabulated below:
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K (in_ + Ko)

0

.5

1.0

1.5

2.0

3.0

e = Varmin(Chernoff)Divided by

Var
up-and-down with d =

5s%

4o_

36%

41%

44%

*The limit of the inverse response problem as K-->_ is equivalent to the

estimation of the parameter a.
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e

III-B2. B._RTLETT DESIGN, (Ref. iO)

ao Introduction

This simple distribution-free design is intended for the exploration of the lower

tail of a response function for the purpose of selecting a type of distribution to

use in analyzing subsequent smaller samples of data taken in similar test situations.

It may also be used for the inverse response problem for small values of _. A

similar design holds for the upper tail and large values of _.

b.

The experimenter selects a set of test levels equally spaced with increment _. The

first test is at a level where responses are expected roughly 50_of the time.

Testing continues at this level until the second response; then testing begins at

the next lower level. Testing continues at this lower level until the second response

occurs, etc.

c. Comments

If the response function is known to be normal, a step of _ = .Sa is better than

d = _, at least for the 1%and .1% inverse response problems and for sample sizes

over 300; the l_r_er step size is better for sample sizes under 80 (see simulation

results in Appendix V-C). In general, this is typical of the way that _ depends

on the intended sample size. Almost any parametric or nonpar_metric method of

analysis m_y he used on data collected by the Bartlett design.
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III-BS. 20 ZIL DESIGN

a. In__t_

Thi_ is an extremely simple distribution-free design for estimating the "zero-

threshold" stimulus level, that is, the highest stress level at which no responses

are possible. Even in those situations where it is not possible to assume the

existence of a threshold, the design is still of use for the inverse response prob-

lem if .01 < _ < .I0. The design will be described for this range of _ values!

a similar design maybe used for the case .90 < _ < .99.

b.

A fixed set of test levels with equal spacing _ is chosen. The first test is made

at a level where the experimenter believes that the response probability is about 50%.

The quantity _ is chosen so that the initial test level is three levels above the

stress level believed to be the threshold, or, for the inverse response problem,

three levels above x .

Testing continues at a level until the first response occurs, or until 20 nonresponses

have been observed. If the first response occurs within the first five tests at a

level, the next test is taken two levels below; if the first response is on the

sixth to twentieth test at a level, the next test is taken on level below; if there

are twenty nonresponses at a level, the sequence ends.

More than one sequence may be used; in each case the new sequence starts three levels

above the level at which the previous sequence terminated.

c. Comments

In the conventional implementation of this design three sequences are run, and then

the level below the lowest level at which a response is observed is taken as a
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nonparametric estimator of the threshold.

If the 20 ZIL design is intended for the inverse response problem for small =, a

parametric analysis would be preferred, because the simple conventional estimator

has a bias which changes drastically with step size. For example, if _ = 0.05

and the response function can be assumed to be cumulative normal, maximum-likelihood

estimates of _ and a would be used to compute an esti_te of _ - l._Sa (the

experimental objective when _ = .05). Although the 20 ZIL design is not nearly

efficient for this inverse response problem, the danger in the aes,_ption of nor-

mality is greatly reduced relative to, say, the Bruceton design, because no extra-

polation is involved. For ex_ple, if A = a, the estimate of X.o 5 = _ - 1.64_

will be at a stress level in the middle of the data.
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III-B4. RUN DOWN D_IGN

a. Introduction

This design is used for the inverse response problem when the response function can

be assumed to be cumulative normal and when 200 tests can be made. Tests are con-

centrated near the 35_ and 10% response levels, and the design is satisfactory for

inverse response problems from _ = 25% to _ = 10%. It is not recommended for the

inverse response problem when _ _ 5%.

An analogous procedure exists when 75% _ _ _ 90%. This design was originally intended

to be used in conjunction with an elementary final analysis based on a log logistic

assumption for the response function. The analysis employs the results of the last

180 tests, which are at only two levels. The Run Down design is discussed in (Ref. Ii).

Phase I: Initialization

A Bruceton design (Section III-BI) is used to conduct the first twenty tests. Let

m = _ and s = _ denote the estimates of _ and a obtained by the Dixon-Mood

(Ref. 12) or maximum-likelihood methods of _n_l}'_i_ (_,ctions IV-B4, IV-B1).

Phase II: The _5,_ Response Level

The next fifty items are tested at m -.4s

Phase III: The 10% Response Level

The next 130 tests _re tested at m -l._s, except in one situation. If the fifty

tests in Phase II gave five or less responses, then eighty more tests are taken at

m -.4s, followed by fifty at m - .2s.
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c. Comment_

For the completed sample, mnximum likelihood estimates of

(see Section IV-B1).

and a are suggested,

This designcannot really claim to be very efficient, since in general it is entirely

established on the basis of the analysis performed at the end of Phase I. The design

is useful when there is cost or time saving in having 130 tests at the same level,

or when there is relatively little time for analysis between tests. When these con-

ditions do not prevail, one of the many sequential designs available, such as the

Alexander Design or the Rothman Design (Sections III-B6, III-B14) is recommended.
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III-B5. EOBBINS-MONRO DESIGN AND VARIATIONS

a. Introduct ion

Several designs for sensitivity experiments have been derived from the general

stochastic approximation scheme of Robbins-Monro which was formulated in 1951

(Ref. 6). These designs, generally considered open-ended, can be used either

with or without distributional assumptions on the response function. The rules

for these designs assume that it is possible to test at any stress level.

b. Basic Desisn Rules

1. First test at L 1

Z. If the response at

stress level

some a priori best guess of xa.

L 1 is given by Yl = I, then the second test is at

Lz - L1 al(l )

where a I is the first term of a sequence

then the second test is at stress level

{an] given below. If Yl = 0

L 2

3. Let the

test be Yn

by

Ln+l

where (an]

= L 1 + al_ •

th
n test be at some stress level L and the response for that

n

(0 or i); then the next test will be at stress level Ln+ I given

= L + an(a- )nn

is a specified sequence of numbers which must satisfy
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L
1

1

a le

n

2

n

If it is assumed that M(x) is locally linear around xQ then the asymptoti-

cally best _mlues for the sequence are given by

i
a =: Cln •

n

The optimum value of c which asymptotically minimizes the variance of the

estimate of x_ is

c =

Since c must be chosen in advance, this re_tionship is of little use when

M(×) is _o_m. When distributional assumptions for H(x) can be made, c

can be expressed in terms of the distribution parameters (through the relation

c = 1/(M'(x_))), which in turn generally must be guessed at before the pro-

gr_m begins. Lu either case, the choice of c is not critical as long as it

is larger than the optim,mm (see Refs. 9,13). When asstm_tlons or prior information

concerning distributional parameters is possible, the selection of L1, the

best guess of x_, also is made in terms of these pazameters. The selection

of L1 and c when the distribution is norrml is discussed below.

4. There is a theoretical expression for n, the required total number of

tests, based on the criterion that the asymptotic variance of the estln_te be

65



less than a specified value (Ref. 14). Since this condltlon depends on

parameters which are difficult to estimate (e.g., M'(x_)) with satisfactory

precision, the testing is generally stopped after a predetermined number of

tests •

5. The estimate of x_ after n tests is Ln+ 1.

c. Discussion and Variations

As can be seen from the design rules, the value of _ must be guessed and the

optimum c is given in terms of the derivative of an unknown function; thus in

general c must also be guessed before testing begins. Since all of the varia-

tions of the design involve both of these parameters, we shall postpone the

discussion of how the estimates are affected by them until these designs have

been described.

Delayed Process (Coch.--an-Davis) for a =. l/Z, (Ref. 9)

From the equation for deter____ning successive test levels

Ln÷ 1 = Ln + an(a'Yn)

_.'esee that if a series of all responses or nonresponses occurs (so that (X-yn

re_mins constant), the step sizes Ln+ 1 - Ln continually decrease because

[.an] is a decreasing sequenze. If _ is far from x_, then these decreasing

steps would require a large number of tests before we are in a neighborhood of

o

If we are testing in a region around x we would expect in any efficient
.5

design approxi_.ateiy the same number of responses and nonresponses. Thus if

the first few tests result in all responses or nonresponses, we would be led to
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believe that our guess of _ _as not a good one. In the delayed process

version of the Robblns-Monro design this poor guess is counteracted by not

allowing the step sizes to decrease until a change of response occurs. The

rules can be stated as follows:

1. First test at _ some a priori best guess of xa.

_. If Yl (the response at _) is O, then

L2 = _ + o_ 1 •

Our step size will remain aa I until a response of

Y2 " = Yk = 0 then= Y5 = ""

Ln+ 1 = Ln + aaI (n = i, 2, -'. , k) ,

I occurs. That is, if

but if the respor_e at Lk+ 1 is i, then our step size will decrease as in

the Robbins-Monro design. Similarly, if Y2 = Y) ..... Yk = 1 our step size

will be constant throughout these tests, that is

Ln+ I - aI )= Ln (l-a for n = i, 2, .-- , k

3. When the first cha._e of response occurs we introduce the second term of

our sequence [ak} and continually decrease the step size from then on. If

Yl = YZ ..... Yk = 0 but Yk+l = I then

Lk+p = Lk+ ! - az(1-a ) .

coo _Similarly for Yl = YE = = Yk i but Yk+l O, we have

Lk÷ 2 = Lk+ I + a2C_
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h. For all n > k the stress level is given by

Ln+ 1 = L +n an-k+l(_-Yn )

5. The sequence

Monro design.

[an] and the stopping rule are the same as for the Robbins-

If _ is close to x5 this variation differs only slightly from the Robbins-

Monro design, and estimates of x.5 are essentially the same for the two. The

variance of the esti_,_tes in this variation will increase as h moves away

from x.5, but much less drastically than for the Robbins-Monro design. This

_provement is obtained without introducing any complications in the calculations.

Variations in Sequences (a = i/2)

CharGes in the selection of the sequence {c/n] can also be considered, again

to overcome a poor choice of L1. Alternate choices for [an] are {2c/(n+l)]

and [3c/(n+2)]. When L1 is close to x.5 the asymptotically optimum sequence

[c/n] used in the Robbins-Monro design gives better estimates as would be

expected. However, use of the alternate sequences yields improved estimates

when _ is not close to x.5. In all cases the delayed response design gives

better estimates than the Robbins-Monro design either with or without sequence

variations.

Kesten Variation, (Ref. 7)

In this design the objective is to obtain more rapid convergence of the test

levels to x@ by using decreasing step size only when testing in the region

close to xa. Frequent changes in sign of Ln+ 1 - Ln is the criterion used

to indicate that the testing is in this region. 'l_is is equivalent to a change
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of response, i.e., Yn-1 _ Yn" Therules for the Kesten variation are:

Rules i and Z are the same as in the Robblns-Monro design.

3. Use the sequence [an] = [c/n] which is the same as for the Robbins-Monro

th
design. Then if the n test is at stress level Ln with response Yn' the

(n+l) st test is at

where

with

and

I - + Cn(:-yn)

cz = __

e 2 = a 2

cj = _t(J)

t(j) = 2 + _. 5[(h-Li.l)(h_l-Li.2) ]

6(x) = , x < 0

, x>O

The function t(j) is constructed so that the step size remains the same when

the responses at two levels Li. 2 and Li_ l are the same, but decreases when

the response at Li_ 2 is different from the response at Li. 1.

4. The remaining rules are the same as for the Robbtns-Monro design.

For all values of G the Kesten variation gives better estimates than those

obtained with the original Robbims-Monro design.
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Odell Modification, (Ref. 8)

This is a modification of the Kesten design. As in the latter, the step size is

only decreased when testing is in the region of x (based on the same criterion);

however, in this region the test levels are deter_ined by linear interpolation.

In the Odell modification =ore than one test is _erformed at each test level.

The rules can be stated as follows:

i. Choose k, the number of tests to be performed at the first level and

the increment to be added to k with increasing trials (see step 5).

2. Perform k tests at _, the best a priori guess of • . Let Yli

(i=l,2,...k) be observed responses, then the average resuonse at

by

k

i=l

LI is given

3. The next test level, L2, is given by

L2 : L1 + al(_- yl) •

4. If the nth test level is at Ln with average response Yn' the (n ÷ i)st

test level is given by

Ln+I=L n + Cn(_- yn ),

where cI = aI

c2 = a2

and if cj_ 1 = aL
for L _ 2, then
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J

az

Yj - Yj-I

when a, _ (Yj-I' Yj)

when _ _ (_-i'_j)

cj+ I ='

P

az

aZ+l

when cj = az and _(yj, yj+l)

when c_(Yj, Y_+I )

when _(yj, Yj+l )

Lj-Lj_ 1

and cj = - -

Yj-Yj-I

where

.

_(_j, 9_+i) if Yj _j+l"

If (Lj-Lj_I)(Lj_I-Lj_2) < 0 , Ak tes_are added to the sample size k.

Discussion

Stochastic approximation designs give _nbiased estimates only when _ = 1/2.

This can be explained most graphically on the basisof an example given by

Wetherill (Ref. 5) as follows: assume _ = .75 and the first test is at

x.75 but results in a nonrespon_e. Then the second test would be at

x.75 ÷ .7_c, where c is defined as before, and at least 31 tests would

be required to return to x.75 using the Robbins-Monro design. This number

would be reduced to eight tests for the Kesten variation.
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But in all cases there will be a bias in the estimate of x if _ _ .5,

irrespective of the choice of x. Of course, the estimates are as}_ptotically

unbiased, by the definition of stochastic approximation.

The Robbins-Monro design and its variations are primarily intended for use in

the distribution-free case, although they may be used in conjunction with dis-

tributional assumptions as indicated earlier in this section. In both cases,

the accuracy of the estimate, _ , will depend on the choice of these design

parazeters: for example when the response function is assumed to be cumulative

normal, the Robbins-Monro design gives satisfactory precision of the estimate

only when either _ or a is well known in advance. The delayed response

variation overcomes a poor choice of L particularly if the estimate of a
1

is between 2_/3 and 3u/2.

In the distribution-free case the choice of the parameters c and L1 will

affect the efficiency of the design. In general the estimates of • are not

sensitive to errors in c, provided c is not less than its optimum. The

choice of L1 is much more critical, particularly when the Robbins-Monro design

is used, due to the continually decreasing step sizes in this case. By slowing

this decrease all of the variations are less adversely affected by the choice

of LI. The delayed reaction design does this with no increase in computational

requirements, so on the basis of simplicity it is preferred.

The results of the various simulations which have been made using these sto-

chastic approximation designs are described in Appendix V-C.

72



III-B6. ALEXANDERDESIGN

a. Introduction

In sequential designs new levels for testing are determined from previous test

results, and this may be accomplished in many different ways. For the up-and-

down designs which have predetermined step size, new levels are determined from

the results of the previous test only. Stochastic approximation designs use

the same information, but in addition the variable step size depends on the

total nu_nber of tests already performed. In the Alexander design the step size

is constant, but new test levels depend on all previous test results.

The design, which is intended for the inverse response problem, uses alternately

increasing and decreasing sequences to bound the sought-for stimulus level xa-

The testing ends when xa is, with a specified probability, located within am

interval of length not more than ?_ (A = step size). From this interval

estimate, an estimate of x(x is found by linear interpolation.

The initiation and termination rules for the sequences are defined in terms of

monotone estimates of the response probabilities at the test levels. In the

original design, which should be used for _ around -5, maximum-likelihood

estimates are used. However, for extreme values of _, it is more efficient

to use both m_ximum-likelihood estimates and an estimate based on confidence

bounds. How these are found is indicated in the design for extreme values of

_o

When a g .01 or a _ .99 and only a limited number of tests is available,

the .05 design can be used in conjunction with a tailwise parametric assump-

tion (see Section II-A1).
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Simulations of both .5 and .05 desi6ns have been carried out (see Appendix

V-C). The design is gener_lly more efficient than other available nonparametric

designs, and is asymptotically as efficient as the best parametric stochastic

approximation when distributional assumptions are valid.

b. The General Design

i. The first test is at L1, the a priori best guess of x_.

Z. By the method of reversals monotone estimates are evaluated at all test

levels after each test (see Section IV-B6).

3. Testing will be performed by alternately increasing and decreasing sequences

of test levels.

4. The first test of an increasing (decreasing) sequence is at either the high-

est (lowest) level, strictly above (below) the last test level, at which the

estimate is less (greater) than or equal to G or, if there is no such level,

at the level above (below) the last test level.

5. An increasing (decreasing) sequence will be terminated at the first level

at which the estimate after a test at that level is strictly greater (less)

than _.

6. The rules for ending the design depend on the value of _ and are given

explicitly below.

c. The .5 Design

For a = .5 the estimates used in following the design rules are the maximum-

likelihood est_ates given by the method of reversals. When the testing is

finished we wish to have an interval I such that Prob(x_I) > P, where P

is some prescribed probability. The length of I depends on the particular

experiment; it is never more than twice 4, the step size, but in most cases
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f= is A. The occurrence of an interval of length 2A corresponds to the

situation when _ is at the center of I. Testing will be stepped when either

of the following conditions is satisfied: (a) there are three adjacent test

levels L0 < L 1 < L2 such that the response estimate at L1 is -5 and the

response estimates _0 and P2 at levels LO and LZ, respectively, lead to

the confidence statements

Frob{po > .5]< (1-P)/Z

Prob{pz < -5}< (I-P)/Z

or (b) there are two adjacent levels L0 < L2

statements can be made.

for which the above confidence

When P is .5 (as _as used in the computer simulation study), _hen the condi-

tions for L0 and Lz are given by the following table:

A B

0 2

1 )

2 4

3 6

4 7
5 8

6 9

7 lO
8 iz

9 13
I0 14

In this table, k denotes the number of responses at _ and B denotes the

mini_.um nu_'oer of nonresponses which must be observed at that level for the

condition Ln (a) to be satisfied. Similarly, if A is the n_m_ber of non-

responses at LZ then at least B responses at L2 are required for _e.nnir_tion.
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In the followi:_ simulated example, the Alexander deslgn is used for a = .5,

A = .5, with a c1_mulative nolnual response function, _ = O, o = i:

Test Number Stress Respons 9

1 1.3 i

2 .8 l

•3 0

4 .8 1

5 .3 i

6 -.2 l

7 -.7 0

8 -.2 o

9 .3 l

-.2 i

-.? o

12 -.2 I

Since the response fraction at -.2 is 5/4, while at

method of reversals must be used, giving 5/7 at -.2

interpolation between 5/7 at -.Z and O/Z at -.7

•5 : "'55"

•3 it is 2/3, the

and at .3. Linear

gives as final estimate

d. The Alexander Design for Extreme Values of

A consistent nonparametric design for the inverse response problem has stress

levels converging to x_. Therefore, when a ~ .05 we would expect approxi-

mately 19 nonresponses for every response. Thus in this =ase a good design

forces some testing in the stimulus region below the lowest level at which a
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response has been observed. (We refer to this as the "zero region".) Since

the maximum-l_kelihood estimates in the zero region are all zero s a new

"estimate", _, will be introduced to insure testing in the neighborhood of

xa. This est_mate is actually used only to determine when to terminate a

decreasing sequence. In all other cases, maxlmum-llkelihood estlm_tes are

still employed.

The definition of _i is given as follows: let the interval ZI be that part

of the zero-region m L1 and let N be the number of nonresponses observed in

Z 1. Then _l is given implicitly by

= l-P

where P is some specified probability.

The objective in using the new type of "estiz_te" is to be reasonably sure that

decreasing sequences end below x_. From the rules for the design, a decreaslmg

sequence will terr_inate at level L1 where 51 < U. From the definition of 51

the follov___g confidence statement can be made:

Prob[91 < _Iobserved responses} > P ,

i.e., on the basis of the observed responses the probability that h is below

xa is greater tham P.

A uniform set of rules for the design can now be given:

i. The first test of an increasing sequence is at the level below that at which

a response has been observed. If the result of this test is a response the

sequence ends; othe_;ise, one more test (at the next higher level) is performed.
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2. The first test of a decreasing sequence is at the level below that at which

a response has been observed. The sequence ends at level L1 such that in the

corresponding interval _ (the zero region _ h) at least N nonresponses

have been observed. Values for N can be found from

(l-_)n=1-P , N-- [n]+l .

The following table gives values of N for P = .5

a N

.lO 7

•o9 8

.08 9

.o7 _o

.o6 lz

•O5 14

.O4 17

•03 z_

.Oz 35

.Of 69

3. Testing ends when there are three adjacent levels L1, LE, and L3 such that

at least one response has been observed at L_ (and none at a lo_er level) and

a total of at least N nonresponses have been observed at L2 and L 3. The

value of N is given in the preced _ing table.

As a becomes smaller the number of tests necessary _o terminate a decreasing

sequence and, therefore, the total number of tests in the design, becomes quite

78



!arge. Because of this, it is reco_nended that for very small _ (say, g .OZ),

tailwise parametric assumptions should be used in conjunction with a .05

design (see Section II-BI).

I.

_. The estimate, _, is found by linear interpolation between the response

probabilities estimated at Lz and L 5 by the method of reversals.

e. Discussion

These designs have the advantage that once the rules are understood, the actual

procedure is fairly straightforward and the intermediate calculations between

tests are extremely simple. The parameter x may be estimated by the method

of reversals and linear interpolation (see Section IV-B6). Of course, as with

any nonparametric design, distributional or tailwise l>_metric assumptions cam

be used to estimate x_. For data taken by this design, the risk in making

these ass,_ptions is much less than that involved in using Bruceton data

and the normal assumption to esti_ate X.o I = N-Z.326s, for example.

Ln Appendix V-C co__plete results of simulations of the Alexander designs for

= .5 and .05 are given. It appears that this design_ particularly for

extreme values of _ is much more efficient than other nonparametric designs

which are not based on analysis of all previous results at each stage. Non-

parametric esti_ates from the Alexander design are as3anptotically as efficient

as those from parametric stochastic approximations of x_.

One of the advantages of these designs is the small nut bet of tests required.

In Appendix V-B4, a formula is given for the upper bound of the expected

sample size for extreme "_alues of (x. When _ = .05j the bound is 76 tests.

In our simulationsj the average number of tests %'as about 45 for (z = .05; for

= .5 the average number of tests was about ii.
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The step size, or increment between test levels, denoted by A, should be

small if the first test is close to xa, and larger if the first test is

further away from x_. A suitable value for A based on the results of exten-

sive simulations of the Alexander design is A = W/7 for the 50% problem and

A-W/40 for the 5% problem, where W is the "prior sigma," that is, the

standard deviation of the first test around xa (cf. Sections III-BI3, III-BI4).

This recommendation is intended for the case of a very poorly known response

function. The experimenter can do somewhat better if he has an estimate of the

value of M'(x_) (cf. Section III-BS).
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Example

The following data %'ere simulated using a normal response flmction

s = i, so that for (_ = .05, x_ = -1.6/_5. The first test was at

step size chosen _as .25_. (The X's and O's

responses, respectively.)

wi:h _ = O,

-3o and the

indicate responses and non-

S: _ulus Le'v_l Test Results

-3.00

-z.75

-2.50

-2 .z5

-2.00

-i -75

-i .50

-i .25

-1.00

- .75

- .50

0

0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 X

'. 0 0 0 0

0 0 0 0 O 0
i

0 X 0 O

X

I1 D1 12 Dz 13 D3

0

0

0 0

0

0

0

0

0

I4 D4 _ D5

In the above table, the colu_ms Lndicate sequences (I for increasing, D for

decreasing). The final estimate is obta_ed by linear interpolation vhlch

yields _.S = -1.675. Note that a total of 44 tests _as required.
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III-B7. THENAVALPO'/DERFACTORY(NPF_;D NPFINVERTED)DESIGNS

a. Introduction

This type of design is intended for finding "threshold" stress levels or for the

inverse response problem. Thus it is similar to the 20 ZIL desi_n (Section III-B3),

except that it would be used for less extreme values of _ (e.g., from 10% to 30%

for the version given below).

For large _, a complementary design to the one given below may be obtained by

interchanging "responses" with "nonresponses" and "-" with "+" in the design rules.

b. NPF Inverted Design (for Lower Tail_

Phase I: Initialization

A level S and step size A are chosen so that M(S)

and so that S-2& is believed to be the desired stress level

The first test is at L1 = S - 2&

is believed to be .5,

(x or threshold).

Phase II: Increasing Sequence

If the first test is a nonresponse, the second test is at

general, Li+ I = Lx + _ until the ith test is a resoonse.

and a decreasing sequence is started.

L2 = LI + A. In

Then Li+ 1 = Li - A,

Phase III: Decreasing Sequence

Testing continues at a level until either a response is observed, in which case

testing proceeds to the next lower level, or three nonresponses are observed, in

which case the design is terminated.
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c. Co_nents

This design is sonetimes repeated five times, starting each subsequent repli-

cation one level above the final level of the previous replication. Further

details on this design are given in Ref. 28.

d. Examo!e: _ = 0.i, S = 7.1

1

2

3

4

5

6

7

Li

6.9

7.0

6.9

6.8

6.7

6.7

6.7

_°

I

0

1

1

1

0

0

0
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III-B8. BLOCK-SEQUENTIALDESIGNFORq_E 50%INVERSERESPONSE
PROBLF_WHENTHERESPONSEFUNCTIONIS CUMULATIVENOR_VAL

This design is for determining the stress level at which the response is 0.5

(inverse responseproblem for _ = .5) whenit is assu_nedthat the response

function is cumulative normal. Further, it is assumedthat from considerations

of specimenpreparation it is necessaryto completethe testing in a limited

numberof "blocks". All of the stimulus levels for a given block must be

determinedbefore the tests are performed. In such cases the design problem

breaks into two parts: (1) the determination of the numberof tests for each

block, given the total numberavailable for all blocks, and (2) the explicit

calculation of the stress levels at which these tests should be performed.

Weshall give a procedure for handling this design problem in which the selec-

tion of block samplesizes is handled independently of the specification of the

individual stress levels within each block. Theapproach is basedon a general

asymptotic estimation of the growth of information for sensitivity experiments

(see AppendixV-B1) and leads to the approximate optimization of the number

of tests in each block. The general treatment of the design for _uy number of

blocks is indicated in Appendix V-B1. We shall limit attention in this section to

two-block experiments.

a. Suppose that the assumed cumulative normal response function has parameters

and o, both of which are unknown, and that the experimenter's original

guess at _, denoted by To , is norczlly distributed with mean _ and (known)

standard deviation so .
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The amount of prior information (see Appendix V-BI) is expressed in the form

E ° = (_/2)_/S2o , which gives the number of asymptotically efficient tests

(at _) providing an asymptotically equivalent amount of information.

b. Approximate optimum sample sizes for two-block experiments for two values

of E are given below:
o

S_21e Size of First Block 111

Total Sample '4 il

Sizes forWhich IEo_ 02

i" i!z'3

the Given First 2.00112.3Block is Optimum Eo

i i' ,l'_ • 6.... 7 8

, i25-z9 30-_,

It should be noted that the effect of E° on the optimum sta_ing of the two

blocks is slight. It may be shown furthermore that the loss of expected informa-

tion relative to the optimum is small if non-optimal sample sizes are used, even

to the extent of selecting equal sample sizes in the two blocks. For example,

if 32 tests are available and Eo = .02, then the (8,24) design gives about

17.36 units of information, whereas the (16,16) design gives about 14.77 units

(in terr.s of the equivalent number of asymptotically efficient tests). Either

_ay, the two-block designs are significantly less efficient than the three-

block design (5,5,24), which would give about 23.11 units.

At any rate, we can summarize the results given in this table by the ezpirical

formula

nll~
n1 = size of first block;

.02 _ E • 2.OO ,o
N = total sample size

c. Given the (approximately) optim_u allocation of the number of tests to each

block, we next consider the specification of the test levels within each block.

The general idea of this design is to use So, and numbers derived from it, to

determine the spacing of the tests _ the first, and subsequent, blocks. The

location of each block will be de_ermined by the latest estimates and by the

response "imbalance" imtheprevious block.
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The experimental design will be defined inductively. Let

nj - the numberof tests allocated to the jth block

m mO
o

mj m _ nj ,

i=l

-s _J'l + "5

sj J-lyre j + .5 '

.th

where mj denotes the cumulative sample size up to the j block, and sj is

an estimate of the standard deviation of _j, the latter being an estimate of

made after the jth block. (The choice of estimators is discussed below.)

Suppose we have just finished the jth block, and wish to determine the stress

levels for the (J+l) st block. We use the cumulative normal function

g(x;_j, sj) with parameters _j, sj. Let rj be the fraction of responses in

th
the O block. Then the nj+ 1 stress levels for the (J+l) st block are the

values xk (k = l, 2, ... , nj+l) determined by

- .01- .98r +k

g(Xk;_j,sj) = nj+l 0 (k = I, 2, "'" , nj+I)

is .5, the stress levels for the (J+l) st block are "equi-spaced inIf
rj

probability" and centered around _j using this procedure. If rj is near 1.O,

the stress levels are moved downward; if near 0.0, _hey are moved upward.

A

d. As a first estimate _j of _ we may use the maximum likelihood estimate

(see IV-B1) or the est_ate given by the MOS method (see IV-BE). If neither

applies, then all tests through the jth block resulted either in all responses
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or all nonresponses. If there are only responses, say, then

where Smi n denotes the lowest stress level tested.

_j " Smin-Sj/V'm j ,

Once _j is obtained, we incorporate the prior information concerning knowledge

of _ by using the estimate

whe re

_j --C °÷ (l_)_j ,

a = .z/(mj+l).

If the prior information were .OZ, the correct value of _ would be

.02/(mj+.OZ). If the prior information were as high as 2, then the correct

value of _ would be 2/(mj+Z). Since the value of E0 is not known, but

generally in this range, the v_lue .Z/(mj+l) has been chosen as a compromise.
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III-Bg. :,_LTIVARIATE SENSITIVITY DESIGN

a. Introduction

Little attention has been given to the design of multivariate sensitivity exper-

iments, that is, experiments with several stimulus variables. In the field of

biological assay, the emphasis has been on determining suitable distributional

assumptions for the response function and on methods of analysis, rather than

on the design of the experiments (see, for example, Ref. 16). Sometimes it is

assumed that only one of the variables is a "sensitivity" variable, so that one

of the uni_ariate sensitivity designs can be combined with a factorial or

perhaps rotatable design for the other _riables (see Refs. I and 3 ).

As described in Section II-A4, the problems encountered here are largely analogous

to those for univariate sensitivity experiments. If there are k stimulus

variables, the finding and testing of response function models involve the con-

slderatlon of a (k+l)-dimensional response surface. The inverse response

problem becomes the determination of a k-dimensional equal-probabillty contour.

The selection of a multivariate design depends on whether the stimulus variables

"interact". Various definitions have been used for this term; in what follows

%'e shall use a definition based on the assumption that, if a failure does not

occur, the object tested returns to its original condition. (This is not an

acceptable assumption for biological experiments where doses are gener_!ly addi-

%ire .) Then, if the response, when the stimuli are applied simultaneously, is

the same as when they are applied consecutively, the stimuli will be referred to

as "noninteraetive". An assumption of noninteractlon can be tested by a )_2.

test (see Section IV-B7).
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_'hen the stimuli do' not interact, the following simple nonparametric design can

be used to determine estimates of the probability of response at each level

combination at which a test is performed. It is assumed that the response

function is monotone nondecreasing in each stimulus variable_ for fixed values

of the other variables, and the estimates will be constrained to satisfy this

condition. There do not appear to be any good designs available for multivar-

iate sensitivity experiments with interaction, although some preliminary work

which describes the equal-probability contours in this case has been accom-

plished (see Appendix V-Bg).

b. Multivariate Design Without I_teraction

We first treat explicitly the bivariate ease for which the definition of n_-

interaction can be expressed mathematically as follows: if the probability of

a nonresponse when stimulus x is at level xi is qxi and when stimulus y

is at level yj is _j, then the probability of a nonresponse when both are

applied at the level combination __(xi,Y_) is Q(xi_yj) , where

Q(xi'yJ)= %i

Using this relationship and properties of Poisson's generalized binomial distri-

bution, estimates Q(xi, yj) of Q(xi, Yj) are easily determined when the fol-

iowir_ design is used (see also Appendix V-B7 and Section IV-BT).

Bivariate Design

Ccnsider the nl_

[i = I, 2, "'"

nlXn 2 points.

points on the recta_ar grid given by (Xil yj)

j = i, 2, "'" , n2]. Perform _ tests at each of these
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This simple design derives its usefulness from the method of analysis associated

with it (see Section IV-B7). However, this analysis depends heavily on the

assuzption of noninteraction, which should be verified by the test given in that

section.

It is difficult to make general statements concerning the best choices of hi'

n2, and _, since these depend on one's prior knowledge of the response sur-

face. From preliminary investigations it appears that nI and nz should be

taken equal and _ as small as possible, consistent with the total number of

tests available and other restrictions on the design.
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lll-BlO. NONPARAME_ICDESIGNFORDISCRI_.LNAT_ BEIWEEN TWO RESPONSE FuNCTIONS

a. Introduction

In this section we give a design for discriminating between two monotone noQ-

decreasing response functions which are otherwise both unspecified (see the

following section for discrimination between cumulative normal response functions).

The design is derived on the basis of (1) maximizing (roughly) the probability

of concluding that the two response functions are not identical, when in fact

they are not, and (2) ensuring that, as long as the functions are unequal over

some interval(s), this probability approaches one as the sample size becomes

infinite (see Appendix V-B5 for discussion). In the basic design given, it is

assumed that, for each test, the experimenter can sample from either population;

variations are given for experiments in which only one of the two populations

can be sampled. The rules for the design do not include criteria for _erminating

the experiment; these may be developed separately using the techniques of

Section rJ-BS, which gives an asymptotic analysis for use in the discrlzination

experiments discussed in this section.

b.

P_se I: Lnit ialization

The first _hase of testing is to conduct an up-and-down test series on each

population (see Section III-B1), wi:h ccuumon step size 4, starting at the

same stress level for each series. This initial level should be half-_y

between the 50% response levels expe_ed for the two functions, and G should

be the average of what would be used if _he two functions were tested separately.

This phase ends when at least two responses and two nonresponses have been

recorded for each population, or even sooner if the sum of the absolute v_lues
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of the differences between estimates of the two response functions at cor-

responding stress levels is strictly greater than l; in the latter case the

methods of Phase II are more efficient.

Phase II: Discrimination

At each step of Phase II, both sets of data, and the combined set of data, are

analyzed by the "method of reversals" (see Section IV-B6). For each (tested)

stress level s, the resulting estimates of the response probabilities for

population l, population 2, and (under the null hypothesis of equality) the com-

bined populations are denoted by _l(S), _2(s), and _3(s), respectively. For

each and every (tested) stress level s and for each population i, i = l, Z,

the "marginal discriminator"

Di(s) = Pi(s)Ln_i(s}/p_(s) ] + _(s)Ln[qi(s)/q3(s)]

is computed, where qj(s) = 1-pj(s), and x[_n(x)] is defined as usual to be

zero if x is zero. Let I and S be values of i and s for" which Di(s )

is maximized. Then the next test should be from population I and at stress

level S. If the (I,S) pair is not unique, one of the pairs should be chosen

at random from those pairs _hich maximize Di(s), unless there are other design

considerations. (For example, the normal analysis of the next section, even though

it may not be strictly appropriate, can be used to break ties by selecting that

pair _hich most closely resembles the optimum computed u.nder normal assumptions .)

Each time this discrimination phase is performed, testing continues until the

total sample size is twice the sample size at the point when Phase II was last

entered, or until Dj(s) is everywhere zero, whichever occurs first. The

experiment then proceeds to Phase III. The doubling rule for terminating Phase
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II insures that, under the null hypothesis of a difference between populations,

the probability of being in Phase II approaches one as the sample size becomes

infinite; this in turn insures the asymptotic efficiency of the design.

Phase III: Densification

The purpose of the third phase of testi_ is to c_tinue testing if Phase II

leads nowhere, and to insure that the test levels for both populations approach

dense subsets of the space of possible test levels as the sample size goes to

infinity (a dense subset of the real line has infinitely many points on any

interval). Thus, no matter how small the interval(s) on which there is a

difference, this interval will be found eventually. The probability of test-

in_ in this interval will then approach one as the sample size becomes infinite_

which is the same as saying that the probability of spotting the difference will

approach one.

For each population, one test is taken half-_ay between every pair of successive

stress levels at which tests have previously been made t one test is taken A

above _.e highest stress previously tested, and one test is taken A below the

lowest stress previously tested. The experiment then returns to Phase II.

c. Discussion and Variations

If there is not much time between tests for computing the quantities Di(s) for

all values of s and i, the experimenter _y choose to recompute only those

two or three values which seem most promisir.g; after the experiment is well into

Phase II, it is generally satisfactory to call for blocks of five or ten tests

at the same stress level.
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If at some stage early in the experiment,

less than the maximum value Di(s) ,

valuesDi(s Di(s),andOi(s÷ )

s < x < s+A, for the next test.

the value Di(s+A) is only slightly

then parabolic interpolation between the

may be used to find a new stress level x,

It is easy to modify the above design if one of the populations has already been

evaluated in a different experiment and may no longer be studied. In some

instances it may be thought of as a "standard" population against which the

second is to be tested, in which case it may be represented by a table of

standard or perfectly known values, say, P2(Sj), J = l, "'' , M. Then testing

on the other population would be restricted to these levels, sj, J = l, ... , M,

and p3(sj) would be set equal to p2(sj) for all values of J.

If costs differ according to a function Ci(s) of population and stress level,

then the function Di(s)/Ci(s) L-_y be used in Phase II, rather than Di(s ) .

If tests from population 2 are much more expensive than those from population l,

then Phase I may end as soon as Pl(S) _ p2(s), for some s. This permits

earlier entry into Phase II, where use of the function Di(s)/Ci(s) inhibits

testing from population 2. In Phase III, tests from population 2 may simply

be deleted in this case.

d. Examples

Example I: Two Test Populations; Basic Design
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Stimulus Level

lO l/z

9 l/2

8 o/z

Response Fractions

Population i Population 2 Combined

i/i

21z 3/_

l/2 l/_

oil o/z

Nov suppose that we are in Phase II. We compute

DICzO)= Z,2(10)= O, Z,i(9): ._*nC2i3)+ ._*"(2) : .l_,

D2C9)= ,nC4/_)= .29, DiCS): *nC3/2)= ._z,

z,2C8): .5_n(312)+ .5_nC3/W= .o6,

DIC_)= D2(7)= o.

Thus the next test in Phase II would be at level 8 frcm population i. If there

is no response from this test, the subsequent test in Phase II should eitherbe

at the same level and population or at level 9, population 2. If there is a

response, the subsequent test would be at level 9, population 2.

Example II: Comparison with a Reference

Stimulus Level , Response Fractions

Test Population (1) Reference P0_ulatlon (2) Combined

zo 3/_ '_3/_ _l_m

9 21_ 37/_ 39/_8

8 1/_ zz/_ 231_8

To find the next test in Phase II, we compute
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DI(IO) = .TSLn(18/Z3) ÷ .25Ln(6) = .Z641

Dz(9)= .5,=(8/13)÷ .5_n(s/3)= .z477

DI(8) = .25_n(12/Z3) + .75_n(_6/ZS) = .1108

Therefore the next test would be at s = i0 (parabolic interpolation gives

s = 9.64).

Example IIl: Data at the End of Phase I

Stimulus Level Response ,Fractions

Population i Populat_cn 2
Data EstLT_tes Data Estimates

Combined

Data Estimates

9 1/1 i.O0 I/Z 0.50 2/3 O.67

6 _1_.1 o.6_ oI_- o._ 1/41" 0.40
7 i/IJ" 0.67 (CCO) l/1 J o.4o

Phase I has just ended because of the apparent differences in response fracticr_.

Phase I! vo'ald now begin with a test at s2 = 8 or s2 = 7 (the maximum

Di(s ) is DZ(8 ) = D_(7) = _n(_/3)),, probably _ith s2 : 8.

Suppose that thi= test is a response; then DI(9) = _n(3/Z) vould be the max!-

mum, and the subsequent test, from population l, vould be at level 9-

*These estimates were obtained by the method of reversals, Section IV-B6.
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!II-BII. DESIGN FOR DISCRIMINATING BETWEEN TWO CUMULATIVE

NO._L RESPONSE FUNCTIONS

a. Introduction

In this section we give a design for discriminating between two response functions

which are cumulative normal distributions with possibly different (and unknown)

para=eters (see the previous section for a non'parametric discrimination design).

This parametric design is derived on the basis of --aximizing the p-'_bability of

concluding that the two response functions are not identical, when in fact they

are not, and on ensuring that this probability approaches one as the sample size

becozes infinite. Rules for terminating the experiment are not given, but may be

developed separately using the techniques of Section IV-BS.

b.

Phase I- Initialization

Each _opulation is tested until there is at least one response at a lower level

than so_e non-response. This may take about twenty tests. Estimates of u and

a c_n then be made by the Minimum Overlapping Subset method (see Section IV-B2)

or, if enough time is available, by the method of maximum likelihood (see Section

IV-BI).

An excellent design for this phase is a version of the Robbins-_:onro design

Section III-BS). The test levels are defined recursively as followss

Ln+ 1 = Ln + A(Rn-.5)/n ,

where Ln denotes the stress level for the nth test,

the n th test, (0 or 1).

(sN

Rn denotes the response to

The parameter A should be between 2 and 2.5 times the value guessed for the

standard deviation a, and LI should be at the experimenter's initial estimate
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of _. The up-and-down method, with conventional step size, may also be used in

Phase I.

Phase II: Discrimination

A

Denote the estimates of the normal parameters obtained in Phase I by _, e1 for

_2' _2 for the second set, and %, _ for the combined data.the first set,

Suppose that less data have been taken from Population 1 than from Population 2.

Then the next test will be from this population at level

sI = .v92_i+ .2o8_+ 8,

where

A2

Because of convergence problems in the derivation of the above formula, the absolute

value of 8 should be subject to the constraint

18t_1._7_1,

if the constraint is violated, use instead

sI = .v92q+ .2o8_+ i._5_1 s_(6)

to compute the next test level. These results are discussed further in Appendix V-B5.

After the new result is observed, the data from the population tested and the com-

bined set of data are both re-analyzed, and another test is designed by the same

rules.

c. Variations

If the two response ftmctions appear to be quite "obviously" different (e.g., if

the sum of the absolute value of the differences between the nonparametric estimates
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"of the two response functions at corresponding stress levels is strictly greater

than two) before Phase I is concluded, the experimenter is advised to switch

immediately to the nonparametric design of Section III-BIO. Also, the test levels

given by the above formula begin to converge as the sample size gets larger, and

larger and larger blocks of tests at a single stress level may be planned without

repeating the analysis after each test. For example, after twenty tests, ten from

each population, it may be feasible to plan for two blocks of tests, ten from each

population, at the same stress level.

d. Examples

Example i:

Suppose the following data has already been collected:

Stimulus Level

i0

9

8

Response Fractions

Test Population (I)

3/4

2/4

I/4

Population (2)
Reference

43/44
37/44

22/44

Combined

46/48
39/48

23/48

M

The maximum-likelihood estimates are roughly U = 9.00, S = 1.48, _ 2 = 8.00,

°2 = 1.00, _3 = 8.06, °3 = I.I0, and it follows that S1 = 9.86. In this case it

would not be ve_j inefficient if the experimenter planned for five tests at

S = 9.86 without bothering to re-analyze the data after each test.
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Example2t Typical Data from Phase I

Stimulus Level

9.50

9.17

9.00

8.92

8.08

8.00

7.83

7.50

7.00

EOS Estimates

Population i

o/1
i/l
o/I
o/i
o/i

Response Fractions

Population 2
|

1/I

i/z
o/z

olz

8.04

.LI

8.96

.11

Combined
,l

1/1

l/Z

O/l
Z/l

o/z
1/2

o/z
O/l

o/1

Since the sample size is equal for both populations, we choose to test from popu-

lation I which has a shortage of responses. But

= 2.V52[(.742)2/.615]_n(6.75)> 1.575%

Thus the next test would be at

SI = .792(8.04) + .208(8.655) + 1.575(.ii) = 8.34 •

(If the Robbins-Monro process had simply been continued for population i, the next

test level would have been

L6 = 8.08 + .20 = 8.28.)

i00



III-B12. LANGLIEDESIGN(Ref. 17)

a. Introduction

This open-ended design is essentially dlstrlbution-free, although it is most

often used in conjunction with the assumption that the underlying resl_onse

function is cumulative normal (say, with parameters _, o). It requires that

all stress levels in some a priori specified interval be available for testing.

The estimates _ , o of the distribution parameters _, o can be found By

standard methods of analysis (see, for example, maximum likelihood estimation,

Section IV-B1).

b. Oesi_£

The rules for deteminizg successive levels for tests are as follows:

1. Choose an interval (A,B) such that at stress level A almost no responses

are expected, and at stress level B almost all responses are expected.

2. The first test is at level L1 = (A+B)/Z.

5- If there was a respo__se at L1 then Lz = (A+LI)/2.

If there was a nonrespor_e at L1 then L2 = (B+L1)/2.

4. Assume tests have been made at levels L1, L2, -.- , Lp, L1, .-- , Ln.

Starting at Ln and %'orkizg back, find the first level, L, such that there

are as _ny responses as nonresponses in the pth through nth tests. Then

=

5. If there is no level L then
P

Ln+I = { (A+Ln)/2 ,
(B+L)12 ,

if a response was observed at L
n

if a nonresponse was observed at L
n
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c. Discuss ion

When a = O, all of the nonresponses will occur at lower stimulus levels than

all the responses. This is called a "degenerate" outcome. In the Langlie

design degenerate sets of data occur frequently for small samples even when

a _ O. This "_-ouLdindicate that the level sequencing rules do not insure that

a sufficient n_er of tests is performed close to _. (A degenerate outcome

does not indicate ,hat _ is in an inter_l between the highest nonresponse

and lowest respor.se, slnc% as Langlie proved, for any point of the interval (A,B) and

any n there exists an outcome with a degenerate interval containing that point.

Although it is nc_ necessary to have a priori knowledge of a in using the

Langlie design: -he initial interval (A,B) must be chosen in advance. In the

simulation carr-ei out by Langlie (see Ref. 17), a great many more degenerate

outcomes occurred _en the large interval (-12a, 8s) was selected than for

the smaller Lnte.--,__l (-4_, 4a). In the former case more than half (53%) the

sets of da_a were degenerate for n = ii, while only ii% were degenerate in

the latter case. Ho'.ever, even with the smaller interval, a degenerate outcome

_'as still encountered when n = 25.

If the stress levels converge to either end point of the interval (A,B), then

one must conclude that the interval was inappropriately chosen. If the levels

converge to scm_. interior point, then the response function is actually a step

function (i.e., a = O). In other cases the levels "_ander" over the entire

inte_¢al. (Ludeed, this is one of the objectives of the design.)

The Langlie design is about as effective for the inverse response problem as

the Bruceton design when large samples are available. More precisely, Langlie
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has shown as a result of his simulations that using maxim_ likelihood estimates

Var( +ka) (2.5+}.zkz)t/,,

which is very close to the variance obtained from the Bruceton design for

commonly used step sizes. The relative asymptotic efficiency of the Langlie

design for various cumulative normal inverse response problems (based on the

results of Chernoff summarized in Section III-A4) is tabulated below:

k (in  +ka)

0

.5

i.O

1.5

Z .O

).0

52%

Consequently, the L_lie design for large samples is to be considered only for

estimation of x_ for (x in a neighborhood of 50 percent, and even in this

case other designs (Sections III-BI, III-BS, etc.) are more efficient. For

small samples the Langlie design is generally inefficient because of the per-

sistence of degenerate outcomes.

•%he limit of the inverse response problem as k _ m is equivalent to the

estimation of the parameter s.



III-BI3. SPLIT-_iE-DIF}_LENCE DESIGN

a. Introduction

In many cases, during preliminary phases of experimentation, the standard devla-

tion, w, of the experimenter's estimate of x_ for the a inverse response prob-

lem is believed to be much larger than the length of the stimulus inte_ in

which the response function goes from 0 to 1. For example, if the response

function is cumulative nor_-al with unknown mean _ and known standard devia-

tion o, and if the standa!_l deviation of the initial estimate of _ is

w = 100% then the above situation holds because the response function goes

from .001 to .999 in an interval of length 6.18Oo.

In this section we give a design for experimenting in the above situation, which

is based on the idealization that the response function M(x) is a step with

unknown point of discontinuity Xo:

li ' x>X°
M(x) : o' x= Xo,

, X <X O

where 0 g M g 1
o

If in fact the response function is a step, the design presented is approximately

optimal, for all sample sizes. It has one defect, however: if the level X
o

should change in the course of the experiment, there is no way to detect this cham_

When applying the design to _he preliminary problem stated above, the

experimenter should use it only as long as the standard deviation of the experl-

menter's latest guess of x_ is still greater than the length of the stimulus

interval over which the response function goes from 0 to 1. Otherwise the

estimates obtained wi/_l begin to converge to the wrong value. In the above
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example, it can be shown that the spilt-the-difference design should be used

for no more than the first six tests.

b.

Let the experimenter's initial guess,

with mean X
o

is at

Yo' of X°

(unknown) and standard deviation w (known).

L1 = YO

The second test is at

Lz = L1 ÷ 1.167w

if the first test is a nonresponse, and at

Lz = Ll - 1.167-

if the first test is a response.

The general ra!es for planning the

i.

(r+l) st test are:

If the first r tests have been responses, let

Lr+ I = L - 1.167w//r •r

2. If the first r tests have been nonresponses, let

Lr+ l = Lr + 1.167w//r •

. If the first r

last result was a response, let

be normally distributed

The first test

tests include both responses and nonresponses, and if the

s denote the highest level previously teste_
r
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below L • That is,
r

S r = max(Lj[j = i, ... , r-l, Lj < L r)

Note that S is not necessarily Lr_ I.r

If the last result was a nonresponse, let S denote the lowest level previously
r

tested above L • That is,
r

S r = min(LjIJ = i, ... , r-l, Lj >Lr) •

and S is the "interval of uncer-
In both cases, the interval between L r r

tainty" in which the point of discontinuity X may lie, and the next test is
o

at the midpoint of thls interval,

Lr+ 1 = (Lr+Sr)/2 •

The design should be terminated after 2+log2(w/5) tests, where 5 denotes the

length of the interval in which the response function is believed to go from

0 to i.

c. Discussion

r

The quantities A r = 1.167w//r in steps 1 and 2 have been chosen so that _ Ai,
i=l

r = l, 2, 3, match the values 1.17w, 1.99w, and 2.657w, which are sho_m

to be optimzl by Marks (Ref. 18) for step response functions and infinite sample

sizes. For example, if Yo = O, then two nonresponses and a response would

lead to the successive test levels O, 1.17v, 1.99 w, and 1.557w accordln_ to

Marks, and to O, 1.167w, 1.992w, and 1.5_Ow according to our convenient

approximat ion.
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III-BI4. ROTH_U_DESIGN

a. Introduction

This design is a type of stochastic approximation for the nonparametric inverse

response problem which makes use of the "method of reversals" analysis (see Section

IV-B6) after each test to plan the next test level. For small samples the design

resembles the "split-the-difference" design (see Section III-B13), but for large

samples the test levels and the estimates both converge to the t_ae value, • ,

unlike the "split-the-difference" design.

b.

Let the experimenter's initial ffaess, Yo'

mean x (unknown) and standard deviatio, w

L1 = Yo + 1.167w(o-.5).

The second test is at

of x be normally distributed with

(known). The first test is at

L2 = LL+ 1.167w

if the first result is a nonrcs;onse, and at

L2 = LI - 1.167w

if the first result is a response.

test are:

i.

2. The value

The general rules for planning the (r + _st

After the rth test, all of the data are analyzed by the method of reversals.

.

than or equal to

r

Yr iecomputed.

If there are any stress levels at which the estimated response is greater

min (_ + 6,I), let S1 denote the lowest of these. If there
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are any stress levels at which the estimated response is less than or equal to

max (_ - &O), let

4. If both SI

sizes, let

S 2 denote the highest of these.

and S 2 exist, as is generally the case for large sample

Lr+ 1 = (S1+$2)/2 + 1.167w(.- _z.);

where a is the fraction of responses in the first r tests.
r

If S 1 exists, but not S 2, let

Lr+ I = (Sl+Lr)/2 - 1.167w/v[r

If S 2 exists, but not S 1, let

L+ 1 = (L_2)12 + 1.167wi/;

If neither S 1 nor S 2 exists, let

Lr+ 1 =

c. Discussion

The quantity Yr in Step 2 is approximated sufficiently well by the first two

terms of the infinite series

Y = V + LnCr+.5) + 1/24(z'+.5)2-...
r

where V is Euler's constant given by

'y = •5"/"72. ••

This quantity Yr is actually the expected number of plateaus when the method

of reversals is applied to r points s_mpled from a constant response function,

and therefore r/Y r is the approximate number of data points in each plateau

*For extremely large sample sizes, this second term should be replaced by (_-_r)/d r,
where dz is an estimate of M'(x ) from the r data points. Possibly

d = 2d(Sz-S2).
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near x (seeSectionIV-B6). (Sl.S2)/2@r

approximate 50% confidence interval on x •

represents the center of an

This distrlbution-free design, combined with the estimator xu = (Si+S2)/2' is about

ae good (asymptotically) as any parametric design which converges to x, althou_

the latter is not necessarily an asymptotically optimal parametric design for the

inverse response problem. For exanpie, a parametric stochastic approximation of

- 4_ in the cumulative normal case is definitely not asymptotically optimal for

the .003_ inverse response problem; the correct procedure is a mixture of para-

metric stochastic approximations of _ - 1.575_ and _ + 1.575o (see Ref. 4).

If the initial estimate, Yo' is unifor-_ly distributed in an interval of width

D (rather than normally distributed), the above design may be used with w = .22-I).

d. A Simulated E_ample

Let _ = .05,

a = i. Then

w = 5, and the response function be cumulative normal with = = O,

x = -1.645. Stress levels are given below to the nearest .1.

We make one observation on a random variable normally distributed with mean

and standard deviation 5. We find Yo = -.2, and therefore test first at

LI = -.2-2.6 = -2.8; suppose _ = O.

Here Rr denotes the response to the r th stress. At this point we have

SI doesn't exist, and

L2 = (-2.8 -2.8)/2 + 5.8 = 3.0; suppose R2 = I.

Now SI = 3.0, S2 =-2.8. _2 = .5,

L3 = (3.0 - 2.8)/2 -2.6 = -2.5; suppose E,_= O.

-1.645

S2 =-2.8,
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Now S1 = 3.O, S2 =-2.5, _3 = .333,

L4 = (3.0-2.5)/2 - 1.65 = -1.4; suppose R4 = O.

Now S1 = 3.0, 32 = -1.4, _4 = .25,

L5 = (3.0-1.4)/2 -1.2 = -.4; suppose R5 = i.

Now S1 = -.4, S2 = -1.4, _5 = .40,

L6 = (-.4-1.4)/2 -2.O4 - -3.0; etc.

The following table gives the rest of the simttlated example:

r

6

7
8

9
iO
ii
12

13
14

15
16

17
18

19
2O
21
22

23
24

25

L
r

-3.O
-2.6

-2.3
-2.1

-1.9
-1.8
-1.7
-1.6

-1.5
-1.4
-1.4

-1.3
-1.3

-1.2
-1.1
-1.7
-1.7
-1.6

-1.6
-1.6

r

r.

O 26

O 27
O 28

O 29
0 30
O 31

O 32
O 33
0 34

0 35
O 36
O 37
O 38

O 39
1 40
O 41
O 42

O 43
O 44

O 45

L R
r r

-1.5 0
-1.5 0
-1.5 0

-1.5 O
-1.5 0
-1.4 0
-1.4 O
-1.4 i
-1.8 0

-1.8 0
-1.8 0

-1.8 0
-1.7 1

-2.0 0
-2.0 0
-2.0 0
-2.0 0

-2.0 0
-2.0 0

-1.9

r

46

47
48

49
50
51

52
53
54
55

56
57

58
59
60

61
62

63
64

L
r

-1.9

-1.9
-1.9
-2.1
-2.1

-2.1
-2.0
-2.0

-2.0
-2.0
-2.0

-2.0
-2.0

-2.0
-2.0
-1.9

-1.9
-1.9

-1.9

R
r

0
0

1
0
0
0

0
0
0

0
0
0

0
0

0
0
0

0
0

After 64 tests, SI = 1.4, _2 = -1.9, and x_= -1.65 (which is much better

than one should expect in general using this design).
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lll-B15. DERNAN DESIGN, (Ref. 24)

a. Introduction

This open-ended design can be used for the inverse response problem. It is dis-

tribution-free and is based only on the assumption that the response function is

strictly monotone increasing. Tests are performed at specified, equally spaced

fixed levels. The design is given here for _ __ _ < 1 but by suitable modification

can be used for O < _ <_.

b. Rules of design

I)

2)

The first test level h is at some a priori best guess of x

Let A be the step size between fixed levels and let the n th

test be at Ln with outcome yn ! then

fLn-A ! with probability I/2_, if ynml

Ln+1 = , pro abilit I-I/2 . y=1

Tables of random numbers can be used to carry out these rules as follows- When a

I00
response occurs a random two digit number is compared to _-. If the random number

is smaller, the next level is a step lower; if it is larger, the next level is a step

higher. If the two are equal a new random number is used.

c. Discussion

If _ = .5, the Derman and Bruceton designsare identical. The behavior for other

values of _ is unknown, although as Vetherill points out (Ref. 5) the use of

random numbers in the design rules leads to inefficiencies for small samples.

Convergence properties of the design are discussed by Derman in Ref. 24.



The estimate of x is that stress level most frequently tested. If several

levels have the same number of tests, then _ is the average of these levels.

Use of this design should be limited to the case where only a specified set of

stimulus levels are available for testing. Even in this situation other distribution-

free procedures (e.g., Section III-B6) are considerably more efficient.
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III-B16. S.%FETY DESIGN FOR EXPONLNTIAL S._%ESS AND NORMAL cdf RESPONSE

a. Introduction

If the response function M(x) of a system or device is assumed to be cumulative

normal with (unknown) parameters _ and _,, and if the maximum stress density

fl(X) that the system i8 exposed to is of the form £e "Bx for the range of

interest (e.g., • • u - 4a), then the safety in using the syste_ (see Section

II-B6) is given by

--el

The following design is intended for estimating S. It has not yet been simulated

nor used in laboratory testing.

b.

Phase I

Let K = -Be, where _ is unknown. Let

Let N denote the intended sample size.

_o denote the initial estimate of

Using astepsize of & = 1._75Go ,

perform a Bruceton design (see Section III-B1). Continue unti_ the sample has

"overlap" (e.g., when the lowest level at which therb iS s response is below the

highest level at which there is a nonresponse), or untJ.l H/4 tests have been

performed, whichever comes first. Let e 1 be the estimate of , at this point

(obtained by the methods of Section IY-B4).

Phase I_

Let K1 = - B_ 1. Depending on the value of l_J, denote the remainder of the

sample tp an inverse response design for x = _ ÷_ of the type given in

Section III-A4. The parameter G, and therefore K, should be reestimated after

e_ch test, _f possible, and. the design reoriented accordingly,



c° Comments

Data collected from this design may be analyzed by maximum-likelihood techniques

(Section IV-BI), and the results used to get a maximum-likelihood estimate of S.

A similar design may be used for reliability estimation if the density of actuating

stresses (see Section II-B6) is given by

f2(x) = AeBx, x < _ + 4_ .
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Ill-BIT. PROBIT_ DESIGN(Ref. 50)

a. Introduction

._nis design, the oldest and one of the best-known, has been applied mostly to

biological problems, in which connection it was originally developed. Two of

the most common applications have been to the determination of the relative

potencies of two or more drug preparations, or to the description of the entire

response curve for doses of a single preparation (see Section II-BS). The

Probit analysis (see Section IV-B8) has generally been used in connection with

this design, although other maximum likelihood techniques (see Section IV-B1)

can be employed. The Probit design is generally used in conjunction with dis-

tributional assumptions (mainly normal and more recently also logistiC), a_

thus it may be necessary to first transform the stimulus variable (see Section

 AS).

b. Design Rules

In the s__plest version of this design, k stimulus levels are chosen and n

tests are conducted at each _ level. The choice of kj n, and the Spacimg

between stimulus levels depend significantly on the particular application, the

ntur_ber of specir.ens available, the nature of the distributional assumptions (if

any), ar_i _ny other factors.

c. Comments

This simple form of the Probit design is entirely nonsequential (see Section

I!I-AI); and as a consequence is relatively inefficient compared with any even

*The term "probi_", introduced by Bliss, is a contraction of the words, "proba-

bility unit".
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partially sequential procedure. Furthermore, since the design requires a great

many tests, it would appear that its use is limited to situations in which all

test levels must be planned in advance of any testing, and cost or specimen

availability considerations are not critical.

There is virtually an unlimited number of variations of the Probit design.

These include: (1) a variable number of tests at the k stimulus levels, either

specified before testing begins or during the program; (2) selecting only a few

of the k levels before testing begins, the rest being established on the basis

of the analysis of the data from these few levels; and (3) testing at decreasing

levels until all nonresponses are observed, and/or testing at increasing levels

until all responses are observed. Most of these variations essentially repre-

sent attempts to sequentialize the Probit design, and in each case more effi-

cient procedures exist. Therefore, we will make no attempt to further describe

or discuss this class of designs.
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IV-AI. THE RELATIONSHIP BETWEEN THE DESIGN AND THE ANALYSIS

OF A SENSITIVITY EXPERIMENT

In all but a few cases, any method for analyzing sensitivity data can, in principle,

be used in conjunction with any design. The exceptions pertain primarily to those

situations in which an experimental design has been devised so as to permit a

particularly simple analysis. The most common examples of the latter case are all

of the variations of the Dixon-Mood method (Section IV-B4) which is intended for use

only on data collected from the Bruceton design or one of its variations.

In handling multivariate sensitivity data the experimenter can use the particular

design and corresponding analysis methods given in this manual (Sections III-B9

and IV-B7), although other methods of analysis may be possible.

Although sensitivity data can often be analyzed by any one of several procedures,

all methods may not be equally efficient. For example, the M0S method (Section

IV-B2) requires data reasonably well balanced between responses and nonresponses

in order to be effective.

Statezents of limitations and flexibility accompany each of the analysis methods

described in Section IV of this manual.
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IV-A2. USE OF PRIOR INFORMATION

Almost all methods of analyzing sensitivity data deal only with the data in the

current sample, and not with information about points or parameters of the response

function available before testing begins. It is generally assumed that such prior

information has been fully used already in designing the current sample through

proper selection of the design parameters (e.g., level of first test, step size).

An example of the effect ot using such information is a version of the Robbins-Monro

process due to Dvoretzky (Ref. 19 ) in which the small sample variance is actually

better than the theoretical minimum given in Section III-A5 which is based on zero

prior information.

Information may be given concerning those aspects of the response function inwhich

we are interested, in the form of bounds (as in Dvoretzky) or a density (as we

generally use) on the initial estimates ("prior density"). If such information is

quoted in units of equivalent asymptotically efficient tests (i.e. the number of

asymptotically efficient tests which would provide the same information under large

sample conditions), and if prior information E0 is a significant fraction of the

sample size (e.g., Eo=.8 , N=5), then a special effort should be devised to in-

corporate the prior information in the experimental analysis. The difficul_j in

carrying this out is that, in order to express E° in the proper units,

ties must be known (cf Section V-B1)$

l.

.

two quanti-

A scale parameter of the experimenter's prior density, and

A scale parameter of the true response function.

The first of these is by definition known, but the second is generally unknown

and must be estimated from the sample at hand, which may be very small.
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Once E° is estimated, the maximum likelihood estimate of the quantities of

interest is averaged with the initial guess using N and E0 as the respective

weights. An example of the implementation of prior information is given in Section

III-B8.
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IV-A3. NOTION OF "PERCENT DEFECTIVE"

In some types of sensitivity testing, the populstion of test items is "contaminated m

with a certain fraction, d, of "defective" items which will not respond to a_

stimulus. If the response function would have been M(x) without these defectives,

thenitis (1-d)K(:).Iththe,.

One obvious consequence of such a situation is that it would be meaningless to work

on the inverse response problem for _ • l-d; a stochastic approximation intended

for • would not converge or even be bounded..

In distributional problems, the parameter d may be known in advance or estimated

from the sample (by maximum likelihood). For M(x) normal, both cases have been

covered by Eissner (Ref. 20), but the modification of the Chernoff optimal design

theory (Ref. 4 ) to allow for contamination has not yet been worked out.

In some sensitivity testing, it is standard practice to make a second test at an

extremely high stress level, on those items which have not yet responded. If they

do not respond on this second test, it is assumed that they are "duds", and are

not counted in the data __malysis. In this way the problem of estimating the

percent defective is avoided.
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IV-A4. MAXIMUMLIKELIHOODESTIMATES

Maximum likelihood estimates (MLE's) of points or parameters of a response function

are those values which maximize the sample likelihood function,

K f ni-fi

,___i_[_(_i)] i [1_M(_i) ] ,

where the data is given by response fractions fi/ni at the stress levels _i'

i=l...K. Such estimates may be distributional (e.g., Section IV-BI) or distributiom-

free (e.g., Section IV-B6) depending on assumptions about the response function M(x).

Under suitable regularity condition on M(x) maximum likelihood estimates are knowm

to be asymptotically efficient, asymptotically unbiased, and asymptotically normally

dis tributed.

These estimates are "design-independent" in the sense that the order in which the

data were acquired in no way affects the calculation. Consequently, ordinary MLE's

may not be very efficient in certain cases relative to other amalysis procedures.

Moreover, when used in the straightforward manner indicated above, MLE's do not

possess the faculty of incorporating prior information (see Section IV-A2) which may

be a serious defect for small samples.

Calculation of _.E's has been programmed for automatic computation in two important

cases: (i) M(x) is normal, and (2) M(x) is monotone nondecreasing, but other-

wise unspecified. These computer programs are described in Appendix V-A.
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IV-A5• T_NSFORMATION8

a. Transformations of the Stress Variables

Most stimulus variables possess an inherent or natural experimental measure.

For example, in drop tests the height of the in, actor, in inches or centimeters,

is the obvious quantification of the stimulus variable. In many applicatiom_,

however, distributional assumptions are appropriate and convenient in terms of

a transformation of the stimulus variable. Thus in a particular drop test, we

may be able to assume that the response is cumulative normal as a function of

_he logarithm of the drop height. Some design and analysis procedures 3 e.g.,

the Bruceton design (Section III-BI) and Dixon-Mood analysis (Section IV-B4)t

require that the stimulus levels be transformed to a new scale on which the

response function is cumulative normal.

More generally, if it is desired to employ a distribution which has some n_-

zero probability associated with every possible value of the independent vari-

able (such as the normal), and if in fact the smallest stimulus value is "O",

then a logarithmic transformation is often very convenient. A variety of trams-

forzations has been used in practice, most common being the aforementioned log

function and the log log function.

The _in point to emphasize in connection with the implementatlon of the designs

az_ analyses in this report is that all procedures, tests of hypotheses, analy-

ses, etc., are to be performed in terms of the transformed variable. The inverse

transfo-_-mation should be applied only to the final estimate(s) of interest. For

example, in an inverse response problem_ if the 1% level is desired and the

response function is normal, _.01 = _-2.326_ should be computed .in the trams-

formed space, and only then should the result be transformed to the original scale.



b. Transfo_nnations of Responses

_Te analysis of sensitivity data based on distributional assumptions can be

extremely tedious. For example, the calculation of exact maximum-likellhood

estimates (see Section IV-B1) requires the iteratlve solution of simultaneous

equations and is difficult without the assistance of a digital computer. One way

to minimize this difficulty is by using approximate methods which sacrifice

little accuracy, but permit reasonably rapid calculations. Perhaps the best

example of this is the widely used Dixon-Mood analysis for normal sensitivity

data. Their estimators are approximatlons to the exact maximum-llkelihood estl-

mators for _ and a which are quite satisfactory when the experiment is

designed and analyzed as directed; computations may be performed easily with the

assistance of a desk calculator.

Another approach to simplifying distributional analyses, which has found wide use

in biological applications, is to find a transformation of the observed responses

for which the transformed response curve has a simpler or standard form (e.g.,

linear). The transformation and curve parameters are obtained by an iteratlve

procedure which is greatly facilitated by the use of certain readily available

tables. The inverse transformation then gives estimates of the original distri-

butional parameters and any percentage point of the original response curve.

Perhaps the most common transformation of this type is that performed as part of

the Probit analysis of normal response data (see Sections III-B17 and IV-B8).

Here the transformed response variate is linear, and the iteratlve procedures

required to estimate the two linear parameters are not difficult to apply using

the mzny computational aids (e .g., tables) that have been developed. Other

examples are the logit and angular transformations. These are given explicitly

in Section IV-B8.
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_V-A6. TESTS OF H_IS

In the course of amalyzing sensitivity experiments, and often as a primary

objective of these experiments, tests of hypothesis about response functions

are performed. Examples are: (i) tests for monotonicity of a response function,

which should be the first step in the analysis of a_y set of data (e.g., Section

IV-B11); (2) tests for goodness-of-fit of a particular response function model,

which should be applied only if monotonicity is not rejected (e.g., Section

IV-B12); (3) tests for the existence of an unknown stimulus variable, if momo-

tonicity has been rejected or is doubtful (Section IV-BI_); and (4) discrimina-

tion tests of several samples against each other or against a standard (Section

IV-BS).

Most such tests are constructed by setting up a null hypothesis and a class of

alternatives which includes the null hypothesis as a special case. For example,

in testing goodness-of-fit, the null hypothesis might be that the response

function is cumulative normal, and the alternatives might be all types of mono-

tone nondecreasi_ functions.

In likelihood ratio tests of hypothesis, the likelihoods LO and L of the

sample(s) are computed under the null hypothesis and alternative hypothesis,

respectively. The alternative hypothesis usually requires more parameters, and

gives a higher likelihood, than the null hypothesis. If f denotes the excess

number of parameters, and if _ denotes the likelihood ratio LJL, then

X2 = -2 Ln(I) is asymptotically distributed as X2 with f degrees of freedom

(asymptotic in the sense of requiring large enough sample sizes at the stress

levels tested, even for a small number of these levels).
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The experimenter nov specifies his "Type I" error, 5 vhlch is the proba-

bility of rejecting the null hypothesis when it is really true. If the X2

value corresponding to (X2, f) exceeds 1-5, he will reject the null h_oth-

esls. Values generally used for 5 are ,05 or .O1; too lov a value rill

make it difficult to reject the null hypothesis when it in fact should be

rejected.
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IV-BI. MAXIMUM LIKEL_OOD ESTImaTES OF CUMULATIVE NOR_t%L RESPONSE FUNCTIONS

a. Introduction

Suppose that a response function is assumed cumulative normal with parameters

and a, and that it is desired to calculate the maximum likelihood esti-

mates (MLE's) of these parameters. An iterative (Newton-Raphson) procedure

is generally necessary, and to insure convergence and reasonable calculation

time, it is of prime importance to obtain good "first guesses". The estimates

are then calculated to the desired accuracy, and it must be verified that the

solution is at a maximum of the likelihood function. Finally, the covarlance

matrix of the MLE's may itself be estimated by the usual asymptotic theory.

A FORTRAN computer program which carries out these calculations is listed in

Appendix V-A.

b. Calculation of Estimates

Phase I: First Guesses

Excellent first guesses for the _uE's are given by the formulae

where

o = (l-a)%+ aoz

_o' Oo denote first guesses,

_i' el denote estimates from the M0S method (see Section IV-B2),

_2' o2 denote estimates from the two subset method (see Section IV-B3),

= If-.sl,and

f denotes the fraction of responses in the entire set of data.
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For veil centered data wehave f _ .5, and the initial estimates are given

by the MOSmethod. For badly centered data wehave f _ 0 or f _ I, and

the initial estimates are averagesof both the M06and two subset procedures,

neither of which is reliable in this case.

If the test data are taken at just a few stimulus levels, the response frac-

tions may be plotted on normal probability paper, a straight llne curve-fit,

and the results used as first guesses for _ and _. This technique may

actually be necessary if the other procedures given above fail to provide

first guesses within the dc_ain of convergence of the Newton-Raphson iteration;

however, it is not generally recon_nended because there are often stress levels

at which the response fractions are O or l, and therefore may not be

plotted on normal probability paper.

Phase II: Iterati_

The normal equations that the maximum likelihood estimates satisfy are

 ET.5- Z"8
_- a qj =0 ,

j i

_L lr £ tjZ_ _-'_. tiZi_____ 0
_= _'L aj Pi J= '

,I i

_'nere L denotes the natural logarithm of the likelihood function

h
r

(T = Z_nqj ÷Z_npl),j i
denotes the rth sti_ralus level,

tr = (hr- )lo,

Zr = i e_p[- t_2],
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t

/rPr = Z dt,

qr = l'Pr' and

the indices i and J denote responses and non-responses, respectively.

For computation on an electronic digital computer (for example, an IBM 7094),

it is safe to set Zr -- lO "6 for all Itrl > 9. For tr > 5, we use

Pr -- .9999999; for tr < -5, we use Pr = 10-7; for all other values of tr,

we use

v, if tr _ 0
Pr 1l-_;if tr < O,

where v = l+Zr_(-1.33027443D 4 + 1.82125598_ 3 - 1.78147794_ z

+ .356563782_ - .31938153),

: z/(z + ._316418881trI).

The Newton-Raphson iterative procedure for solving the two normal equations is

suz_rized by the matrix equation

where A_ and

tively, and

AO denote the increment in the values of _ and _, respec-

Zi

_2L/_2- _2 [>__ h (tj-Zj/qj) - Z _ (ti+Zl/Pi)]
qJ

j i

[j_ " Z i_2L/_o = _Z ZJqj(t_-tjZj/qj-1) - _, _i (t_+tiZi/Pi'l)]
• l
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tiZ i

If M denotes max([_[, IoI), the iterative procedure should be terminated

when

and

Fifteen iterations are generally sufficient even in the wildest examples. The

solution is at a maximum if the determinant of the above matrix is positive and

if _EL/_2 is negative. It is at a minimum if both the determinant and

_2L/_2 are positive.

Phase III: Covariance Matrix

The covariance matrix for the estimates is given asymptotically for large total

sample sizes by

where

l Z_/pr%E[_)2L/_)_-z] = - _, _

l

E[_2L/_i=I_o] =. _ _ trZPPrqT ,

1 ZZ

EI:  L/ o2] : _ tT-Z /Pr " ,

and the index r runs over all tests. If t
r

be replaced by tr; if t r < -5, the factor

-1

> 5,

Zr/P r

the factor ZJ_ r should

should be replaced by -tr.
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Fhase IV: Confidence Bands on Estimates

Suppose we have now computed the maximum li1_elihood estimates

with the as_nptotic covarlance matrix

and S, _o_

, A, C>O .

xu = _+ko, the estimate would be _ = _+ka, becauseIf _e wanted to estimate

the maximum likelihood estimate of a function of some parameters is the function

of the maximum likelihood estimates of those parameters. The variable _ is

asymptotically normal with mean x: and _riance

Var(_) = (i k) V(1 k)T

= A + 2kB + k2C

Then

~ k2c)½_ = (A+ 2_m +
x_

(4"Xu)/_4 is markedly non-normal, az_ the

7 = .95, ; = .99) are given approximately

For small s_.mple sizes the variate

A

y confidence bands on x_ (e.g.,

by

degrees of freedom. The

_: ± ts(_)a4 , 8 = (z+_.7)/2 ,

where ts(f ) denotes a value of the t-v_riate for f

value of f is co_puted very roughly as follows:

f : (cmJc)_-2

_hich, from the results of Section III-A4, equals

1.6436#/c - 2 ,
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This formula is heuristic. The term (Cmln/C)N is the equivalent n_nber of

tests at M + 1.575s (asymptotically optimal for estimating a), and the sub-

tractive term accounts for the two parameters (M and a) belmg estimated.

This approxim_tion may be examined for the Langlie design (Section III-B12), for

which C is asymptotic to

f = .514N-2. Values of f

p. A-Z8).

3.2_/N, so that our approximation gives

are cc_ared to Lam_le's values of n (Ref. 17,

N f n

lo 3.1 3.4

15 5.7 5.4

• _o 13.4 12..5

50 z3.? z3.6

ioo _9.4 5_,.:_

P._se V: Ccmparlng x_

If 4sl and 4,2 are estlmates of

_hem the null hypothesis xa, 1 = xa, 2

Let Var(4, l) amd

IV, and let fl and

Estimates for Two Independent Sets of Data

xa from two independent sets of data,

may be tested as follows:

Var(4,2 ) denote the estimator variances computed in Phase

f2 denote the correspondir_ degrees of freedom. Then

_=s ll:VarC ,l)Ifj ÷ Va=C4,2)l  J ,

and (_=,I-_:X,2)2/S 2 is approximately F-dlstrlbuted wlth

freedomo

l,f degrees of
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c. Lxam_les

Example I:

Stress" Level Response Fraction

4 1/i

3 z/3

z z/_

1 0/i

The estimates from the MOS method are _l = 2.5, _l = .829. The estimates

from the two-subset method are _2 = 2.5, _2 = 1.112, Since f = 4/8,

a = 0, we have as first guesses _o = 2.5, a = .829. The final maximumo

likelihood estimates are _ = 2.5, _ = .856. Four iterations were necessary

to calculate these estimates. The covariance matrix is estimated as

Example II: (Golub and Grubbs, Ref. 21)

Stress Level Response Fraction

2453 iA

2433 o/i

2425 1/1

_4z5 o/z

Since %= 2428, aI= _3.z, _z-- 2443, oz = 58.8, f= z/5, and a= .z,

we arrive at Bo = 2429.5, _ = 17.7. The final maximum likelihood estimateso

are _ = 2451.6, _ = 14.9. Five iterations were necessary to calculate :these
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estimates. The cow-fiance matrix is estimated as

Exszple III:

Stress Level ,Responses/Trials

0 I/Z

-i 1/7

-Z 0/11

s_e _=-.5, 01= .525, uz=o, oz=1.o11, f---z/2o, and a= .4,

we arrive at _o = -'3' o = .72 as first guesses. The final maximumo
A

!_elLhood estimates are _ = -.105, _ = .748. The covariance matrix is

est ir._ted as

.3o6 .18_

.18_ .191/

Example inl: It should be pointed out that the first guess procedure given above

and used in Examples I, II, and III does not always work. Consider the follow-

ing data

Stimulus Level

18.5

9.05

8.6

6.3

1/l

i/i

i/I

StLmulus Level

5.5

3.73

3.7Z

i/i
o/i
i/2



First guesses computed by _he above procedure do not work. In this case, the

final estimates turned out to be _ = 3.94, a = .50, and covarlance matrix
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IV-BZ. THE Mn_D?_ OVERLAPPING SUBSET (M0S)

a. Introduction

The minimum overlapping subset (MOS) technique is a simple method of estimating

the parameters _ and a of a cumulative normal response function. The esti-

mates are excellent for data from a wide range of experimental designs, as long

as the number of responses is roughly between 20% and 80% of the sample size.

The method takes some effort to master, but, once learned, it provides quick

estimates for sample sizes of even 50 or 100. No tables are necessary, and

even a slide rule is sufficiently accurate for the calculations.

In an experiment, the set of data which contains the most information is that

composed of the responses which occur at stress levels below _ and the non-

responses which occur at stress levels above _. From these information-rlch

points, which co__prise a subset of perhaps a quarter of the total data, very

good estimates of S and a can be found.

One attempts to collect these points, which in a probabillstlc sense can be

thought of as beL-_ on the "wrong" side of _, by first taking the average of

the lowest level at which there is a response, and the highest level at which

there is a nonresponse. Then the original ccr.plete sample is examined to see

if there are any points on the "wrong" side of this average. If there are any,

the "worst" such response (that is, the one furthest below the average), and

the "worst" such nonresponse (that is, the cne furthest above the average),

are set aside in a subset.

Next we see if any o_her points _are on the "_To_" side of the mean of this

subset. If there are none, the process is finished and the MOS consists of
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only _he two points already placed in the subset. Othel_ise, the worst such

_rongresponsepoint (if any) and the worst such wrongnonresponsepoint (if

any) are addedto the subset, and a newmeanis calculated for the subset

(whichnowconsists of three or four elements). Theprocess continues until

all of the wrongpoints are in the subset and all of the right points are

still in the original sample. Themeanand standard error of the subset are

then treedto construct estimates of _ and _. The formal rules for this

procedureare given below.

b. Calculation of Estimates

We construct the minimum overlapping subset, T, by constructing a series of

associated sets, {Tr] , as follows. Let xI g x2 g x5 g ... denote the

stress levels corresponding to each and every individual response, and let

Yl _ Y2 _ Y3 m "'" denote the stress levels corresponding to each and every

nonresponse. The initial subset is empty, or null:

TO = _ •

The ini%ial guess at the mean of T is given by

Xo = (xl÷yI)/2 .

The indices ir and Jr are used to count the number of responses and non-

responses, respectively, in the subset T at the rth stage of the process.
r

Therefore

= j -- 0io o
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We now define the subsets Tr recursively. Suppose we have arrived at the

subset

- (5 ...... )
Tr ' x2' ' Xlr' Yl' Y2' ' Y Jr

at the
th

r stage of the process. Let

:Z

r it+ Jr

Then Tr+ I is defined by adjoining to Tr the point xi +i' if Xir+l • _r'
r

and/or the point yjr+l , if yjr+l _ x"r . The process continues until, at the

R th stage, no points satisfy these conditions (i.e., TR+ I = TR). Then the

minimum overlapping subset (MOS) is defined as

T_ Ta •

Now let _ and S T denote the mean and root mean square deviation of the

stress levels of all the points in T, N denote sample size, NT denote the

number of points in the M(_, and v = N_N. Then our final approximate estl-

mates of _ and o are

= /5.32 ST/V , for v • .25

I •83 ST//_-v, for v > .Z5

: - 1.253 (FI÷F2-1) ,

where F I denotes the response fraction within the points of the M06, and F2

denotes the response fraction within the set of points not in the M0S but still

within .6y45a of _. If the latter set is empty, then F2 = -5-
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Theestimate

consists of alternating points p+ku, _-ka, _+ka, _-k_, etc. For an

infinite samplg, ST = ka. Nowas k approaches O, v approaches .5,

as k becomesvery large, v approaches O. Thus the factors j'v and

l/.5_5_-v are intended to compensate for the spacing user in the design.

cases .06 • v • .4.

may be justified intuitively as follows: suppose the design

but

In most

A crude estimate of the variances of the estimators is given by

(_) ,_2/4_ TVar . _

wr( ) .Tz782/nz ,

where

y _-1 - IzF3-11

F3 denotes the response fraction in the entire set of data, and

r.5-v , if v _ .058
z %

17.68v, if v < .058 •

In each case, the formula for the variance is asymptotically correct for designs

asymptotically optimal for estimating the parameter in question.

c. Examples

Example I:

Stress

4

2

1

, Resp0nses/Trials Responses

i/! xI = 2

2/5 xz = 5

z/5 x3 = 5

o/z x4 = 4

'Nonresponses

Yl = 3

_2 = z

Y3 = Z

w,=l
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o

x I = 2.5, iI = Jl = i,

S T = .5, N = 8, N T s Z,

Var(_) _.27, F3= .5,

"In order, the :alculated quantities are To = _' _o = 2.5, io = Jo = O, aml

Z = (2t3) = (xl, Yl). The first subset to be tried is T l = (2,3). Then

zI _-_, _ the_S Is T = TI= (2,3)._o_ _z_ z.5,

v = .25, _ = .8), F1 = .5, Fz = -5, _ = Z.5,

Y = i, Z = -aS, and Var(_) _ .25. This canonical

set of data is analyzed in several other sections of this manual; the answers

given by the M0S are in excellent agreement --nd require the least effort.

Example II: (Golub and Grubbs, Ref. Zl)

Stress

Z455

2_55

2_25

2_15

Responses/Trlals

i/i

o/t

i/i

o/z

Responses

y_= 2_z3

xz = 2453

Nonresponses

Yz = z_t5

y) = z415

T = (2_23,Z_55), N = 5,

F = Fz = .5, _= 2428,
1

wr(_) _ 312.

= 2, v = .4, % = 2428, S T = 5, a = 15.1,

Wr(_)_67.5, F3= .4, Y= .% z= ._,
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Ex_mple III: •

Stress

0

-i

-2

Responses/Trials Responses

I/Z xI = -I

i/7 xz = o

O/ll

Nonresponses

YI-O

y2=-i

y) = -i

Y4 = -i

Y5 = -i

Y6 = -I

Y7 = -I

Y8 .....Y18= -z

T:(-40), _--ZO, _ =Z, v= .i, _=-.5, S_= .5, _= .525, Fl=-5,

F2 = .5, _ =-.5, Var(_) _ .ii, F3 = .i, Y= .2, Z= .4, Var(_)_ .125.

It is reasonably apparent that the estimate of _ is rather poor, and the two-

subset method (Section IV-B3) wcrks much better for this set of data.
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IV-B3. 'IWO-SUBSET ME'roOD

a. Introduction

The two-subset method is a very simple technique for estimating the parameters

of a response function. Although the estimates are generally not good (some-

times they do not even exist), the method has the advantage of being suitable

for desk calculation, and the results can be used as a first approximatlom for

some more refined method of estimation. While it is described here for a two

parameter response function (normal, uniform), the basic principle is easily

extended to response functions with three or more parameters.

b • Procedure

I. Let _ and _ be the parameters of the response function p = M(x;_1_).

2. Let x be any stress level; let nl(X) be the number of tests at all

levels less than x and fl(X) the fraction of responses in these nl(x )

tests. Similarly nR(x) and f2(x) are the corresponding quantities for the

data at the stress levels greater than x.

3- Any value of x which minimizes the quantity

Ifl(x)[1-q(x)]nl(x)-f2(x)[l-fz(x)]nz(x)[be nsedto splitthe intoa

"high" subset and a "low" subset.* This partition is not always unique; but if

there are two such partitions, one would carry out the calculations for both

cases and average the results.

4. Let SI and S2 be the mean stress levels for the "low" and "high" subsets,

respectively, and let M'l(p;a,_) be the inverse of the response function.

*For data taken on the response-poor tail of the response function, for example,

this criterion tends to provide subsets with the same total number of responses.
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Then _ and _ the estimates of the parameters U and _, are given by the

simultaneous equations:

Sl = M"l (q;a,_)

s2= .-l(r2;a,6).

If _ and 0 are location and scale parameters, the above equations will be

linear _ & and 6.

c. Examp!es

Example I: If our response function is cumulative normal our parameters will be

and a. L_t the data be represented in the following fashion:

Stress Level Respons # F,z_ctlon

3 2/_

1 O/1

The stress values in the two subsets are found to be (1,2,2,2) and (5,_,),4),

for which nI = n2 = 4, fl = 1/4, f2 = 5/4, S1 = 1.75, 82 = 5.25. _h.e two

simultaneous equations are

7.25 = _ + .67449_ ,

and our estir_tes would be
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Exaaple II: Cumulative Normal Response Function

Stress Level

.35

.i

- .15

-.65

""9

-z.z5

-I .4

-i .65

Response Fraction S'_ress Level

I/i -i.9

o/1 -2.15

o11 -2._

011 -z.65

o11 -z.9

olz -3.15

Oll -3._

117 -3.65

o/?

Response Fr--ctio n

oh

oK

0/3

o6

o6

o6

o/z

(This set of data was generated from a population for which _ = 0 and a = I.

."T_e_2_ximum likelihood estimates are _ = .58 and _ = i.i0.) The stress

v_!ues in the two subsets are found to be (-35, .I, -.15, -.4, -.65, --9, -1.15)

and (-I.A, 7 times; -1.65, 7 times; -1.9, 7 times; -2.15, 6 times; -2.4, 4 times;

-2.65, 3 t_mes , 2.9, -3.15, -3.4, -3-65), for which n1 = 7, n z = 38,

fl = 1/7, f3 = 1/38, sI : -.4, s2 = -_ .058. The two simultaneous equaticms are

-.4 : _ - l.O68_

-2.o58=_-l.99_ ,

and our estimates would therefore be
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Theseare obviously muchworse t_hanthe _E's for the sameexa___e,but could

be e,_@loyedas "first guesses" for the Ne_con-Raphsonite1_tive procedure used

to calculate the MLE's.

ExampleIII:

Stress Level

0

-i

-Z

Response Fraction

1/2

1/7

o/Ii

The stress values in the two subsets are found to be (0,0), and

(-I, 7 times; -2, ii times), for which nl = 2, n 2 = 18, fl = 1/2,

sI = O, and s2 = -l.611. The two equations are

A

0=_

-1.611 = _ - 1.593a ,

fz" l/z8,

and the estimates are

_=O ,

= 1.011
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. IV-B4. DL_ON-MOOD ANALYSIS

a. Introduction

This analysis is used exclusively in conjunction with the Bruceton or up-and-down

design (see Section III-B1) and is based on the assumption that the response func-

tion is cumulative normal. Since the procedure has found such wide application and

has been described extensively in the literature (Refs. 12, 22), we shall give only

a summary here. The estimates of the mean _ an_ standard derivation, a of the

normal response function are based on the moments of the observed response function

and are approximations to the exact maximum likelihood estimates which are generally

obtainable only from extensive iterative calculations (see Section IV-B1). These

approximations are obtained by taking advantage of certain aspects Of the Bruceton

design and are quite good when the analysis is used as indicated below. The crucial

restriction is that the fixed step size, d, used in the Bruceton design must be

less than twice a. Since this design is generally employe_ with d = o or even

less, the Dixon-Mood approximation to the maximum likelihood estimators is quite

satisfactory. It should be emphasized that this analysis and the corresponding

Bruceton design may have to be carried out with a transformed stress variable (see

Section IV-A5). The step size d is fixed in regard to this transformed variate.

That is, the levels of the stress variable are chosen so that their transformed

values are equally spaced with step d.

b. Details of Method

I. Because of the nature of the Bruceton design the total numbers of responses anc

nonresponses should be about equal. Let N be the smaller of these. For conven-

ience, we will refer to the responses or nonresponses, whichever variable corres-

ponds to N, as "events".
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2. Let Yi (i=O,l,2,...k) be the stress levels (possibly transformed) at which

tests were performed, starting at Yo' the lowest level at which an event occurred.

3. Let ni(i=O,l,2,...k) be the number of events at each of the levels Yi" Then
k

n ° >0 and iZ--oni= N.

4. Let

A_'_in i

B = _ 12hi

i=O

then an estimate, m, of the mean is given by

YO+

where the plus sign is taken if the events being analyzed are nonresponses and

minus if they are responses. An estimate,

s = 1.62Od_ NB-A2 + .020
N2

This formula should not be used when

an alternate procedure described in

s, of a is given by

NB_A 2

<0.3; when this occurs or if d > 2a

Ref. 12 should be employed.

c. Variations for Small Samples

Brownlee, Hodges and Rosenblatt, (Ref. 23)

This method, which gives only an estimate for _, can be used for samples of size

5 to I0. It is also useful when it is desired to conduct several Bruceton designs

simultaneously and subsequently analyse all the observations. The design is des-

cribed in Section III-BI.
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Variation I

I. Let Yi = (l,2,...n) be the levels with equal spacing d

been performed. Let Yn+l be the level at which the (n+l) st

testing were continued.

n+l

2. Let C = _Yi; then the estimate of _ is given by _ =Cn *

gives good estimates if the first test Yl is within 2d of x 5.

following additional variation can be used.

at which tests have

test would be run if

This analysis

If it is not the

Variation IX

If at level Yl a response (nonresponse) occurs, let

which a nonreeponse (response) occurs. Then let

n+l

_M

|

and _ : n+l-k "

Yk bet the first level at

|

The estimate _ is more efficient when Yl is more than 2d from x.5, and also

has less bias. However, if the initial guess of x 5 is fairly accurate, Variation I

is more efficient.

Dixon's New Small Sample Metho d

In the Dixon-Mood estimation procedure, it is assumed that about an equal number of

responses and nonresponses occur. This will generally be valid for large samples

even if Yl is far from x _.

For small samples this is not likely to hold, particularly when y I is far from

in which case an initial string of all responses or all nonresponses is likely to

occur. The following analysis (Ref. 24) determines maximum-likellhood estimates

by correcting for a string of constant responses and also for unequal numbers of

responses and nonresponses during the remainder of the testing.

*We are indebted to Professor Dixon for permission to present a summary of these

recent results and the two tables which follow prior to their publication in the
Journal of the American Statistical Association.
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Let N (the "nominal" test sequence length) be the number of tests, counting from

the test before the first change of response. For N _ 6, the estimate is xf+kd

where xf is the final test level, d the step-slze and k is found from Table l.

In the latte_ O's and X's signify nonresponse and response, respectively.

For N > 6, the estimate is

where the Xi are the levels at which the nominal tests were performed,

step size, and A and C are obtained from Table 2. In this table no

are the number of O's and X's in the nominal test sequence.

d is the

and n

This method of analysis is effective for small sample_ being fairly independent of

initial test level and step size.

Example

Log Dose

1.204

.903

.602

.301

0

Results of Test

X

0 X X

0 0

For the series OXXOXO, we have xf = .602 and from Table i, k = .831, so that

the final estimate is .602 + .831(.301) = .852.
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Table 1

Values of k for estimating LDs0 from up-and-down sequence of trials of nominal

length N. The estimate of LDs0 is x i + kd where x f is the final test level and d is
the interval between dose levels• If the table is entered from the foot, the sign k
is to be reversed.

N

2

4

5

Second Part

of Series

X

XO

XX

XOO

XOX

XXO

XXX

XOOO

XOOX

XOXO

XOXX

XXOO

XXOX

XXXO

XXXX

XOOOO

XOOOX

XOOXO

XOOXX

XOXOO

XOXOX

XOXXO

XOXXX

XXOOO

XXOOX

XXOXO

XXOXX

XXXOO

XXXOX

XXXXO

XXXXX

k for Test Series Whose

O0 OO0

First Part is

OOOO

-. 500 -. 388 -. 378 -. 377

.842 ,890 .894 •894

-.178 .000- .026 .028

.299 ,314 .315 •315

500 -,439 -.432 -.432
1.000 1.122 1.139 1.140

•194 ,449 .500 .506

-.157 -.154 -.154 -.154

-.878 -•861 -.860 -.860

.701 .737 .741 .741

.084 .169 .181 •182

.305 .372 .380 .381

-.305 -.169 -.144 -.142

1.288 1.500 1.544 1,549

•555 .897 .985 1.000 +I
,

-. 547 -.547 -. 547 -.547

-I. 250 -I. 247 -I. 246 -I, 246

• 372 . 380 . 381 • 381

-. 169 -. 144 -. 142 -. 142

•022 .039 .040 .040 •

-.500 -.458 -.453 -.453

I. 169 I. 237 I. 247 I. 248

•611 .732 .756 .758

-. 296 -. 266 -. 263 -. 263

-. 831 -. 763 -• 753 -. 752

• 831 .935 .952 .954

•296 .463 .500 .504 +I

•500 .648 .678 .681

-. 043 .187 .244 252 +I

I. 603 I. 917 Z. 000 2, 014 +I

.893 I. 329 I. 465 I. 496 +4

X XX XXX XXXK

-k for Series ",%"noseFirst Part is

O

OX

O0

OXX

OXO

OOX

000

OXXX

OXXO

OXOX

OXO.O

OOXX

OOXO

O00X

0000

OXXXX

OXXXO

OXXOX

OXXO0

OXOXX

OXOXO

OXOOX

OXO00

OOXXX

OOXXO

OOXOX

OOXO0

O00XX

O00XO

OOOOX

OOOOO

Second

Part of

Series

Standard

Error of

1-_50
J .

.90 a
, i i

.78 o"

.69 o'

.56o"
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•Table 2

, Values of A and C for Approximate Estimate of LDs0 for H>6

n -n
o x

5

4

3

2

I

0

-i

-2

-3

-4

A

10.8

"/.72

5.22

3.20

1.53

0

-1.55

-3.30

-5.22

-7.55

-5
. , ,, . i. ,

11 -rA
X O

OO

0

0

.03

.10

.16

• 44

.55

1.14

1.77

2. 48

3.5
J

XX

.I

C for Test Series Whose First Part is

OOO

0

0

.03

.I0

.17

.48

.65

1.36

2.16

3.36

4.8

XXX

.,, ,. ,

0000 00000

0

.03

.10

.17

• 48

.65

1.38

2.22

3.52

5.2

XXXX

0

0

.03

.10

.17

.48

.65

1.38

2.22

3.56

5.3

XXXXX
J • . • ,, ,.

-C for Test Series Whose First'Part is
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IV-B5. COMPARING ONE S_LE WITH A STANDARD RESPONSE FUNCTION,
OR TgO OR MORE SA_hULES WITH EACH O_ER

a. Introduction

A frequent question in sensitivity experiments is to decide _'hether or not

several samples of sensitivity data "come from" the same response function.

Another question is to decide whether or not a se_ of sensitivity data agrees

sufficiently well with a staadard or previously specified response function.

Experimental designs for these "discrimination" problems have been given earlier

in Sections III-BIO and III-BII; we give belov some likelihood ratio tests for

the distributional and distribution-free dis crinir_t ion problems.

b. Discrimination Between Several Sets of Sensitivity Data

Phase I: Analysis of Individual Sets of Data

Each of n sets of data is analyzed to obtain =maximum likelihood estimates of

the response function parameters (in the distributional case) and/or the response

probabilities at the various test levels (in the distribution-free case). The

maximized value of each sample likelihood is then computed. If for a particular

set, the esti_ted response probability at

and if the sample response fraction at 2.
l

sample likelihood for this set is given by

2i is denoted by Pi' i = i, ..-

is denoted by fi/ni, then the

,k,

k -fi(l_gi)ni'fiL= n Pi£=i

Let Lj denote the maximized sample likelihood for the j_h÷ set, J = i, --. n,

and let
_j denote the number of parameters needed to analyze these data. These

parameters are needed to establish the degrees of freedom for the likelihood

ratio test. In the distribution-free case, the analysis is performed by means
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of _he method of reversals (see Section IV-B6), and _j is given by the number

of plateaus.* In the distributional case, _j is the minimum of the number of

unknown distributional parameters and the number of different values among the

Pi' i = i, ". , k. For example, in the normal case there are generally two

unknown parameters, _ and _. But for the data fl/nl = i/l, f2/m2 = 0/i,

"_e have Pl = P2 = .5, and therefore _ = I, L = i/h. For the data

fllnl= o/1, f21h= l/l, we have _l = O, P2 = 1, and therefore , = 2,

L=I.

Phase II: Analysis of Lumped Data

The next step is to take all of the data together and perform a similar

a_lysis; let the results here be denoted by Lo and _o"

Phase III: Likelihood Ratio

Let k denote the likelihood ratio,

n

= L^/ n Lj
" j=l

2
%_hen, if the sets of data are all from the same population, X = -2 _nX is

approximately X2 distributed with

n

f=Z
j=l _J " _O

degrees of freedom. As a test of the n_ll hypothesis of equality of the n

*l_nis is not exactly correct, but the true value of x for our purpose is not

known in this case. For a strictly increasing response function, the number of

plateaus approaches the number of stress levels as the sample size at every

stress level becomes infinite; therefore, it is at any rate asymptotically

correct to count plateaus.
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response functions, the _lue corresponding to Xz is found from a Xz table

for max(f,1) degreesof freedom. A value over 95%or certainly over 99_

would be considered significant in most cases.

Example of a Distribution-Free Discrimination:

Stress Level Respoz_e Fractlons and Estimates Given by the Method of Reversals

Set 1

z/z 1.0

oD. oo

0/2 0.0

.i = 2

Set 2

1/1 .3_

0/1 , °00

_2=2

Combined

2/_ .5

_/2 .5

o/} .o

x 0 = .2

Lo --i/6_

Then k = 27/256, X2 = 4.5, f = 2, an_ the correspondlng __ value is about

90_. _aerefore a difference between the response functions has not been demon-

strated.

c. Tegt_. 5 a Set of Sensitlvity, DataA_alust a s..t_dar_

Let L denote the maximizod sample likelihood when the data are ea_lyze_

(parametrically or nonparametrlcally) without reference to the standard or

specified response function, and let _ be the number of parameters used. Let

L denote the likelihood of the sample under the assumed standard, or nullo

hypothesis. Then X2 = -2 £n(Lo/L ) is approximately X2 distributed with x

degrees of freedom.

155



N_ar__ze_ric Example: Suppose the response probabilities for the standard are

.2 and .5 at stimuli i and 2, respectively, and the observed response frac-

tions for the new set are 1/2 at 1 and O/1 at 2. Then _l = 32 = 1/3 by

the method of reversals, _ = l, and L = 4/27. But according to the standard,

therefore

L = (.2)(.8)C.5)= .08 ;
o

x2 = -2 _n(.54) = 1.z3 ,

which corresponds to about only 73%.

_arazetric Example :

Stress Level

2453,

2435

2L25

Cumulative Normal Response Function

Maximum Likelihood

Response Fraction Estimate of Response Probability

1A

o/l

1/z

0/2

.924

.557

.282

.l_)

L = .0907

Standard

.5

.5

.5

Lo = .05125

;hich corresponds to 65% for two degrees of freedom.
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I'V-B6. _THODOF REVERSALS

a. Introducti_

The method of reversals is a m_xlmum-likelihood procedure for obtaining distribu-

tion-free estimates of a monotone nondecreasing response function. The assump-

tion of monotonicity implies that the estimates at adjacent stress levels are

constrained to satisfy certain inequalities. (This type of problem is discussed

In a univariate experiment, let the test levels be _i (i = I, 2, "'- , k), and

suppose they are ordered with increasing stress, _l < _2 < """ < _k" If Pi

is to be the estimate of the probability of a response at _i' and if we assume

Cuat the response function is monotone nondecreasing, then necessarily

Pz':Pz '

and :he response probabilities are said to be completely or linearly ordered.

A simple algori_b;n, called the method of reversals, can then be used to find

the estimates.

Lu multivariate experir.ents where the response function is assumed monotone in

each variable, some pairs of response probabilities can be ordered. For

e>'a.m'ole, if _l : (xl'Yl) and _2 = (x2'Y2)' then X1 .c_ and yl _=y2 imply

:.:(il)_ M(L2). However, there are pairs of stress levels for which a natural

order does not exist (for example, xI < x2 but Yl > Y2 ) " In multivariate

experiments, therefore, the response probabilities are only partially ordered,

ani a more complicated algorit_,m must be used to find a complete ordering. Then

the method of reversals can be applied.
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In this section wedescribe both _mivariate and multivariate procedures.

b. Method of Reversals for Univariate Sensitivity Data

i. Let _i (i = l, 2, .-. , k) be the k stress levels at which data have

been collected, where _i < !'3 < "'" < Lk" We wish to find estimates, _i'

of the values Pi = M(Li)' the response probabilities at the levels #i'

which satisfy the constraints

Pl _pi+l (i= m, 2, ..., k-m) .

2. Let ni (i = i, 2, ... , k) be the number of tests at _i and fl the

number of responses observed in the ni tests. Consider the sequence

fl f2 fk
_ eee --

nI ' n2 ' ' nk

If this sequence is nondecreasing, then the estimates Pi are given simply by

fi

Pl - ni "

5. If for some i, fi/ni > fi+i/ni+l, replace both by

fi + fi+l

Ni, i+l ni + ni+l

The new sequence becomes

ee -- -- coo --

nl' n2 ' ' ' ' ' ' "ni-i Ni, i+l ni+2 nk

If this sequence still contains a "reversal" (i.e., a pair of consecutive frac-

tions for which the first is greater than the second), then replace this pair
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by a single term as above.

decreasing sequence:

This process is continued until one obtains a non-

_l _ h etc.,

where each of the ratios has the form

h_ fl + "'" + fi+s

_j ni + ... + nl+ s

for appropriate I ard s.

4. The final estimates are then given by

_i ..... Pi÷s: _ "

If it is desired to obtain estimates of the response,function at stress levels

other than those at which tests have been conducted, then linear interpolation

using these v_lues can be performed.

It is convenient for some applications to introduce at this point the notion of

a "plateau", which is defined as a maximum stress interval over which the esti-

mated response is constant.

Example: Let k = 8 and the response fractions fi/ni at the k levels

£i' "'" 3 £k be 1/3, 1/4, 1/3, 1/5, 1/2, 2/5, 3/5, 1/2, respectively. Then

a nondecreasing sequence is determined as follows:

£Z £2 £3 £4 £5 A6 A7 £8

step o_e z/3 1/_ 1/3 z/5 1/2 z/5 3/5 1/2

Step Two 2/7 218 3/7 4/7
! J

F_z step _/z5 3/7 _/7

m..# .7



where the "reversals" are indicated.

given by

The final nondecreasing estimates are

_l= _2= _3= _ = V15 ,

_5= _6= 3/_ ,

/= _8 = _ 7 •P7

_"_nus,over the plateau from _l to _4 we use the estimate

plateau [_5,_6], 3/7; and for the plateau [_7,_8], 4/7.

in the interval (_4,_5) linear interpolation may be used.

(_4 + _5)/z the estimate would be (4/15 + 3/7)/Z = 73/ZLO.

c. Monotonic Estimates for Multix_riate Sensitivity Data

As was indicated in the introductory paragraphs of this section, the stimulus

levels for multivariate experiments in general cannot be completely ordered.

In this section we give an algorithm for estimating a complete ordering of the

stimulus levels which is based on -_he _uown partial ordering and the observed

response fractions. Then the method of reversals is applied using this com-

plete ordering as in the univariate case. It can be shown that the resulting

multivariate response surface estimates are maximum likelihood under the

assu_@tion that this surface is monotone nondecreasing in each stress variable.

4/15; for the

To obtain estimates

For example, at

The algorithm is initiated by considering any order which is consistent with

the partial order naturally exhibited by the stimulus level combinations. Then

_he observed responses at the stimulus level combinations are used to determine

a new order (which is still consistent with the original partial ordering).

This process is continued until an orderir_ is found which satisfies other
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requirements on the estimates (described later). The resulting complete order-

ing is not unique, but any one arrived at by this process %'ill give identical

estimates when the method of reversals is subsequently appllc_l.

Details of Algorithm

Assume that there are t stimulus variables, and tests have been performed at

_, (i) _t) (0"n distinct level combinations Qi = _xi , x , "'" , xt ), i = I, Z, -.. , n.

Here x_ i) is the level of the jth variable for the ith "point" (combination

of stimulus variables). Note that the x_i) are not necessarily distinct.

If % and _ are such that for all J (J--I, 2, "'" , t), X_1)" _X_Z)_"

and for some J, say J(H x(I) < x(z) then we employ the "natural order"

U

JO JO '

QI <_"

If two levels cannot be ordered in this fashion, they will be called independent.

If, for two sets of level combinations, every member of one is _Idependent of

every member of the other, the sets are said to be "independent".

If s: {%,%, ...

probability estimate,

, Qs } is a set of level comb__nations, then its associated

_, is given by

fl + """ + fs

nI + --. , ns

where ni denotes the n_ber of tests at Qi and fi is the number of

responses observed in these n tests, for i = 1, 2, .-. , s.
I

The complete order is fou_nd in the following manner.

i. The n distinct combinations are written so that all natural order require-

ments are satisfied, say
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wherethese required natural orderings are shownby "<" and commasseparate

independentlevel combinations. All order requirements are not necessarily

indicated here; for example, it maybe that Q1< Q4"

2. This order is nowscannedfor adjacent independentsets. The simplest way

to do this is to consider sets separatedby commasas wehave done above. Thus,

for example, we know _' Q3 are independent as indicated in the above sequence,

but it may also be that [Ql,%] is independent of [Q3_Q4,%].

3. If, for two adjacent independent sets S1, $2, the associated probability

estimates _l and _2 are such that _Z < Pl' then the sets are interchanged.

The new order satisfies all natural order requirements since the interchanged

sets are independent.

4. This procedure is continued until all adjacent independent sets have non-

decreasing associated estimates and a cczplete order has been derived.

5. Monotone estizates are now found by applying the method of reversals under

this complete order.

Ex_@le__: Consider a bivariate experiment (t = 2) and suppose sensitivity

tests are conducted at sixteen level co=blnations, Rij : R(x(1i),- x_j))-

(i = l, 2_ 9, 4; j = l, 2, 3, 4), with the proportions of response at these

points as follows:
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_) z/_ 1/3 z/2 1/3

_(3) 1/_ 1/4 _/5 _/_

_2) z/5 1/a _/6 _/_

An order for Rij that satisfies the requirements is given by

_(_-/3) R_(I/_) R_.3(_./3)_C_./_.) ! _.,0-/_-) _z(_-/8) R230-/_,)_C_./3) I

_3zClla) _3_Cl16)R33Ci15)_(_12) I R_C_/_)_Czl_) _(ll_) _Czl_) ,

where adjacent independent levels are indicated by the vertical lines. For

convenience the response fractions are given in parentheses after each level.

We observe that the a_Jacent independent sets {_},El4 } and {_I,_Z } have

associated probabilities Z/7 a_ Z/IZ and should be interchanged. Simi-

larly I the following pairs of in_epe_ent setsl

{_,R2_ ] and {R31 ,R}2] ,

{R3},R_} and {R_I } ,

may nex_ be interchanged. This gives the order

Rll _ 1_1 _. I _ _ 1_:_._ 1_ R_ ! R_z I _ _, 1_ _ _
and we note the following pairs should be reverse_:

{R2},_} a_ {R_I}'

giving the order



There remainat this s,-_gethe reorderings

{Rl_,RI4} and (R4I} ,

{RZ4} and {R3yR_2,R43]

which result in the order

Rll R12 R21 R22 R31 R32 R_ 1 RL 5 Rl4 R23 R-53 R_E R43 RE4 R54 R44;

this satisfies all our conditions and is therefore final.

Now the method of reversals can be used as follows:

1/3, l/S, 1/4, 1/% 1/8, _,'6, _,,s, _/3, _/4, _/4, _/s, 1/4, 1/4, J-/3, 112, 1/3

LI _ _---._ _ L__3

2/8 _/12 1/8 1i6 !/6 _/7 2/9 1/4 1/_ 1/3 2/5

4/20 1/8 t/6 1/6 4/16 1/4 1/4 I/3 2/5

t 1

5128 _/6 1/6 4/i6 1/4 1/4 1/3 2/5

6/3_ _/'6 _/16 1/4 l/4 l/3 z/_

[ j

7/-0 4/_6 1/4 i14 113 215

and our final estimates are

§_, = i/_

Wa,

*In the multivariate case it is natu:_l to de _:__.e a plateau as the largest closed
connected subset of the stress dcmain over _hlch the response surface esti_r_te

+ _ four plateausis constant. Thus in _he above exa_.ple _h_re are .
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iV-BT. ANALYSISOFMULTIVARIATESENSITIVITYDESIGN WITH NON-INTERACTING STIMULI

a. Introduction

For notational simplicity we consider explicitly the case of two stimulus vari-

ables. The analysis for more variables is conducted in an analogous manner. The

design of multivariate experiments is discussed in Section III-Bg.

Let the level combinations of the two stimulus variables be given by the grid of

points (xi, yj)(i=l,2,..._; J=l,2,...n2). Then the probability of a nonresponse

at the level combination (xi, yj) is binomially distributed with parameter

Q(xi, yj) ffiqx i- _j, where qxi and _j are the independent probabilities

of nonresponses for the individual stimuli x and y, respectively.

Let Ni be the total number of nonresponses observed in £ tests at each of the

stimulus levels given by (xi, yj)(j=l,2,...n2). Then Ni has a Poisson general-

ized binomial distribution (see Ref. 26) such that E(N i) = _qxi-j_ I

Similarl_ the number of nonresponses, Mj, in £ tests at the level combinations
nl

(xi, yj)(i=l,2,...nl) is such that E(Mj) = _qyj _i=l qxi; the total number of

nonresponses, T, for all tests is such that E(T) ffi3

n 1 n 2
and _ we have

i=lqxi j=l qYj

Q(xi'Yi) ffiqxi" - Z.E(T) "

i=l qxi j=l--j

In the following sections this expression will be employed to determine estimates

for Q and to test for interaction between x and y. (Interaction is discussed

in Section III-B9.)



b. :.:onotoneEstimates

Let rij(i=l,2,...nl; j=l,2,...n2) be the observed number of nonresponses in

tests at the level (xi, yj). An estimate, Q(x i, yj), of the probability of a

response at this level can be found by using the following procedure. We first

compute

n2 nI nI n2

N i =_rij, Mj = Ir'"iJ T --I I rij "

j=l i=l i=l j=l

Next consider the set INi](i=l,2,...nl) where, as before, Ni is the total

number of nonresponses observed in _ tests at each of the stimulus levels given

by (xi, yj)(j=l,2,...n2), If the_sequence NI, N2,...N I is monotone decreasing,

then Ni = Ni" If not, the method of reversals is used (see Section IV-B6),

assuming all Nx have equal weight. That is, if N.x < Ni+l' then both N.x and
Ni+Ni+ I Ni+Ni+ 1

Ni+ I are replaced by 2 . If 2 < Ni+ 2 all are replaced by

Ni+Ni+l+Ni+2

3 , etc. Proceeding in this fashion one obtains the monotone nonicreasing

estimates _''x The estimates _._ are determined in the same way. The Ni' Mj'

and T can now be used as estdmates of E(Ni) , E(Mj), and E(T), respectively,

and we obtain finally

A A

i,yj)=j if 1

I , otherwise.

c. Test for Interaction

The assuzption of noninteraction can now be tested by a

i:l j=l x_A_2
T
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which has (nl-1)(n2-1) degrees of freedom, should be sufficiently large, the

null hypothesis of non-interaction would be rejected.

d. Example

The following true nonresponse probabilities were selected as the basis for a

brief simulations

True Values of q(xi, yj)

.36 .32 .24 .20

•54 .48 .36 ._0

.72 .64 .48 .40

.90 .80 .60 .50

For these values a table of random numbers was used to generate the following

hypothetical data for n1 = n2 = 4 and £ = 2:

Y2

Yl

Experimental Data (rij)

xI x2 x3 x4

0 I I I

I i I 0

2 2 i 2

2 i 0 I

where the number of nonresponses are indicated. From this we find the Ni,(i=1,2,3,4 )

are given, respectively, by 4, 7, 3, 3. Using the method of reversals one obtains

the set of corresponding monotone estimates [Ni ] = [5.5, 5.5, 3, 3]. Similarly,

[Mj] = [5, 5, 3, 4] which gives [Mjl = [5, 5, 3.5, 3.5]. Our estimates

 (xi,yj)=
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are nowgiven in the following table (_ = 2, T = 17).

Y4

Y3

Y2

Yl

Estimates _(xi,Yj)

x 1 x2 x3 x4

.44 .44 .31 .31

.44 .44 .31 .31

.81 .81 .57 .57

.81 .81 .57 .57

A x2-test can now be used to test for noninteraction:

4 4 (2 (xi,Yj)_ rij)2

i=l j=l 2Q(xi'yj)

_4.6

2 2
From tables of X we find that for X = 4.6, with 9 degrees of freedom, the

assumption of noninteraction would not be rejected.

e. Extension to More Variables

i. Letthe stizulus variables be x(I) (2) (t)
, x ,..., • . Perform Z tests at each

of the _ x n2 x ... × nt points on the t-dimensional rectangular grid given by

(I) x_;) x_) ) (ii=1,2, ; i2=1,2,...,n2; ...; it=l,2,...,nt)Xll , , ..., ...,n 1

.(2) be the number of nonresponses at the point t (i) x(t))
2. Let _is _Xil ..., it

(ii=1,2,...,ni; ...,ij_l=l,2,...,nj_l; ij+l=l,2,...,nj+l;...,it=l,2,...,n t)

[i.e., x (j) fixed],= and let T be the total number of nonresponses. Then

(1)

iI "'" it

(x(1) (t)) = _Tt-1Q i I ''"'xi t

1

As in the bivariate case

 iz"- t

, if _Tt_ I g i

, otherwise.

[_(I) [2;i1il] are the monotone estimates of ] determined from
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the sequence N_ 1). N_ 1) _(1) by the method of reversal., and similarly
• ".t nl

for _(2) _(t) The total number of tests, N, required is given by
i 2 ' ..., i t "

_T= Lxn I Xa 2 X..., xn t o
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IV-BS. PROBIT_NALYSIS

a. Introduction

This zethod of analysis was developed for use in connection with the probit design

(Section III-B17) and is based on the assumption that the response function is

cumulative normal. A transformation, either performed graphically or analytic-

ally, is used to change the observed fraction response to probits in terms of

which the cumulative normal distribution becomes linear. This approach has been

previously employed in biological applications (e.g., dosage mortality).

bo Graohical method

The observed percentage response at each stimulus level is transfor=ed to a

probit, i.e.g, to a standard normal deviate increased b_ 5. (This increase

serves to simplify the computation by avoiding negative values.) The stimulus

level is then plotted against a linear scale of probits. A regression line can

then be fitted and the probit for any stimulus level can either be read directly

from the graph or determined from the equation for the line. The latter should

approximate the relationship betveen dosage and response which is given by

=

c. Anal_tic method

This method is based on maximum likelihood estimation procedure and is applied

iteratively until satisfactory estimates ere obtained. A "provisional" probit

versus stimulus level line is drawn; from it, expected probits, Y, for each

stimulus level can be determined. A "working" probit, y, is now fo:_nd for

each stimulus level in one of the following ways:
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I) Algebraic procedure:

y = _ + v--P
Z '

The equation

is used, where Y is the expected probit, P and z the corresponding prob-

ability and ordinate, respectively (as read from the provisional line), and the

obserced response fraction is p.

2) Tables are used (Ref. 33) of the "maximum working probit"

YlO0 = Y + _z

and/or the "minimum working probit"

P
i

YO =Y- z '

where Q = i - P and z and

i
m

R = YlOO - Yo' we find R = z

Y are defined as before. Defining the "range"

and then the following expressions are employed:

or

Y = YO + pX

Y = Yloo -

where p is the observed response-fraction. More extensive tables which give

the working probit y directly are also available (see Ref. 30).

When working probits have been found by any of these procedures then a linear

regression line is determined using the weights n.w where

n = sample size at the given stimulus

and
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2
Z

W I -- @

P_

Now z, p, and Q can be determined from the provisional line but are

in fact given exactly by

1
Z =--e

P = I-Q=

2

½(Y-5)

x-5 - -_(x-_)2
2_ dx

Tables of w, the weighting coefficien_ can be found in Ref. 33. The resulting

line is then used as a provisional line for the next iteration. This is con-

tinued until the parameters of the line remain essentially unchanged on suc-

cessive iteratiorm.

Transforzations to other than probits for which tables are available (in Ref.

33) are the following:

Bliss-Fisher (Probit)

Logit

Log log.

Angular

Transformation

Transforms normal data to a

straight line.

f(P)= _ l°g e

f(p)- loge[-1oge(1-p)]

f(p) = arc sin d_
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One advantage of these "transformation" meti_ods is that comparisons between

various response populations can be more readily made in terms of the simpler

transformed models.

Because of the extensive literature on the probit, lo_lt, and other transfor_

,mtion methods of analysis we will not give any details hei-e.
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IV-B9. A LIKELIHOODRATIOTESTFORMONOTONICITY

a. Introduction

The distribution-free procedure given below is for testing the null hypothesis

that the response function is monotone nondecreasing, a hypothesis which may be

suspect if there are any reversals in the data. The test is based on the extent

of the decrease in the sample likelihood when the sample is analyzed under the

assumption of monotonlcity.

b. Procedure

The sample response fractions fl/nl, ... , fk/nk at the levels _l' "'" ' _k

are first analyzed by the method of reversals (Section IV-B6) to give estimates

Pl '"" Pk withJ ' 0

null hypothesis is then

plateaus. The maximized sample likelihood under the

k All l i)ni'q=H Pi ("L° i=l

In the absence of the null hypothesis of monotonicity, the usual binomial estl-

mates Pl = fi/ni may be used, giving a sample likelihood

fi ni'fi

k r fi (ni'q) 7L=n
i=l U fi J

ni

Then X2 = -2 _n(Lo/L) is approximately X- distributed with d = k-g
o

degrees of freedom.

174



Stress Level Response Fraction Estimate

7
2 z/z-J _19

I iI_ _1_

k = D, _ = 2, d = i,
o

LolL _ _-55/_ _3.77/_
z2.55/77 =

Xz _ 3.99, which corresponds to roughly 95.3% in the

of freedom.

X2 table for one degree

d. Comments

A test for mono%onicity would perhaps be the first order of business in analyzing

a set of sensitivity data. If a distributional assumption is made, and if the

set of data passes the test for monotoniclty, the next step would be the goodness-

of-fit tesz Lu _he following section.
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IV-B!O. A LIKELIHOOD RATIO GOODNF_qS-OF-FIT TEST

a. Lu_roduction

If a set of data passes the test for monotonicity (see Section IV-B9 ), and if

a specific type of distribution is assumed, then the appropriateness of this

assumption must be tested as the next step in analyzing the data. The test

given below is based on an evaluation of the decrease in the sample likelihoo_

when the sample is analyzed under the distributional assumption, rather than

under the weaker assumption of monotonicity.

b • Test

The sample response fractions

are analyzed by the method of reversals to give estimates

J.

fl/nl, "'' , fk/nk at the levels _l' "'" ' _k

_i' "'" ' _k' with

plateaus. The maximized sample likelihood is then

T.= nk pi_i (1,_llni'q
i=l

The data are now analyzed under the distributional assumption, giving likelihood

L ° based on _o part--meters(see the discussion on parameters given in Section

IV-BS) • Then

x2- -2  (To/T)

is approximately X2 distributed with d = _i-_o degrees of freedom. The

value corresponding to X2 and _ax(d,l) degrees of freedom would be found in

a X2 table, and the distributional assumption would be rejected for _alues,

say, over 95% or 99%.
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c. Exa_nple: Test for Norrmlit[

Stress Level

z453

z43_

2423

Z415

Response Fraction
|

from

Method of Reversals

1/l

o/i

1/i

0/2

Response Probability Estimate
from Maximum

Likelihood Estimates

_=2_!.61, a=_._l

1.0

0.5

0.5

0.0

KI= 3

.gZ_

.537

.z82

.1_

Then

L = 1/4 ,

L = .0907 ,
o

xz = z.o_ .

For one degree of freedom, the corresponding X2 value is about 84%, and the

distributional assump_icn would not be reJectod.



IV-B11. TESTFORTHEEXISTENCEOFANUNKNO%,_NSTINULUSVARIABLE

a. Introduction

One of the possible causes of significant non-monotonicity in sensitivity data is

the existence of an unknown (or perhaps known but uncontrolled) stimulus variable

(see Section II-A4). In this section we give a distribution-free procedure to

test for this possibility.

In Section V-B8 the distribution of the response fractions when there is a single

fixed known stimulus variable and an uncontrolled variable is derived. This leads

to the interesting result that the variance is smaller when such a stimulus is

present. Thus the test given below should be used only when observed variance in

response fraction for several sets of data at the same level of the known stimulus

variables is smaller than that expected for a binomial variable.

b. Tes_.__t

A x2-test can be used as follows:

I. Perform n sets of m tests each at a fixed level of the known stimulus

variable. Those tests already completed which originally indicated non-mono-

tonicity may be included in this analysis.

2. Suppose fi(i=l,2...n) responses occur; constract the following table

fl

m-f I

f2

m-f 2

which may be considered a contingency table. The estimates of the expected values

are mp for the first row and m - mp for the second, where
m

n,m
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Thenusing the classical l-test we compute

i=l i=l

[(m-f i) - (m-n_)] 2

_-_

i=l

which has n-I de@Tess of freedom.

4. The null hypothesis that there are no hidden stimulus variables will be rejected

if the probability of having a larger l-value is less than some specified

probability (.95, for example).

5. The choice of n and m should be such that

n>5

> 5.

Since the nonmonotonicity was originally seen fro_ tests at several levels of the

known stimulus, the question arises as to which of these levels to choose for per-

forming the test given above. The above fo_ulas indicate that the best level to

choose is that which corresponds to a response probability as close to .5 as

possible. It is well known that this l-test is weak in the sense that the null

hypothesis is rejected only in extre=e circumstances. This suggests that, if the

computed X2-value corresponds to a probability as low as, sa_ .85, additional testing

beconducted.
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APPENDIX

V-A. COMPUTERPROGRAM LISTINGS
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V-A1. I:_UT DATAFOR"MLE": A F_RTi_ANPROGR,LMTOCO,_IPUTE_'IXIMUE-LIKELIHOOD
_:STIMATESOFTHEPARA/,IETERSOFA C_<ULATIVENORMALRESPONSEFUNCTION

a. First Card: Format (4112)

i. Number (2 _ LVL _ 200) of distinct stimulus levels

2. Maximum number of iterations (generally 15)

3. i if MOS is to be used for first guesses.

O if initial guesses and bounds are to be inpu_

-I if MOS and 2-subset methods are to be used for first guesses (preferred)

4. O if ordinary output desired

1 if intermediate output desired

b. Second Card: Format (6E12.8)

(To be used only if the third entry on the first card is O)

I. initial guess for

2. initial guess for a

3. lower bound on

4. upper bound on

5. lower bound on

6. upper bound on

c. Third Card: Format (12A6)

Up to 72 characters to be printed as output title

d. Fourth Card: Format (6E12.8)

I. stimulus level

2. number of successes at _I

3. number of tests at L1 (total number of tests at all levels _ 3000)

4. stimulus level _2 > _l

5. nu.mber of successes at L2

6. number of tests at _2
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e. Fifth Card (if necessary): Format(6E12.8)

i. stimulus level _ > L2, etc.
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V-A2. LISTINGS AND S._:PLE OUTPUTS

We give below the listings of 3tLE and NOR, followed by three examples of the

output of _E. MOR is given in subroutine form. The calling sequence required

is given on the first page of the listing.
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V-BI. GROWTHOFINFOi_t_TiONFOR'i_lE50%INVERSE,RESPONSEPROBI,EM
WHLNTHERESPONSEFbq_CTIONLSCUMULATIVENORMAL

a. Introduction

To discuss the growth of information in sensitivity experiments, we require a

characterization of the amount of information available before an entire group

of tests is conducted (from previous studies, etc.). This prior information is

expressed as that number of equivalent asymptotically optimal tests which would

provide the same asymptotic information. Our approach is based on the use of

asymptotic expressions to characterize this gro_-th of information. Attention

is limited to the case in which the response function is a normal cdf, and

to simplify the calculations we assume that %he sole aim of the tests is to

estimate the median critical stress level (i.e., _ = 50%). Our analysis is

carried out without actually specifying the test levels to be used in each of

the blocks, although it is haown (see Ref. 4 ) that for this type of experiment

any test sequence convergir_ to the median is as_vnptotically optimal in ten-ms

of efficiency in estimatir4_ the median.

b. Efficiency and Growth of information

Suppose we have a cumulative normal response f_nction with (unknown) pare_r_eters

and c. Let _ denote zhe maxim am-likeiLhood estimate of _. Consider a

design with T tests whose goal is the esti_tion of _. An asymptotic

expression for the variance of _ (as T- _)

~ c2o /(coc2-c

where Li = the level of _he stim,Jlus variable on the

is given by

.th
i test,

(l)
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ti= (Li-_)la,

1 -t_Iz
Zi = ZT_"_ e

1 /i e_u2/2Pi = 2_ du ,

= l-p i ,

Z
V i = Zi/Piq i ,

T

Ca)

Since the goal of the experiment is the estimation of _, it is not unreason-

able to restrict attention to designs %_ich are asymptotically symmetric with

respect to _. Then

CI ~ 0 ,

o_(T) ~ oZ/C O •

It has been shown (Ref. 4) t_t

when ti = O, i = i, "'" 3 T;

O_(T)~ (_/2)JIT •

O_(T) is as_nptotically minimized

this minimum value is

The asymptotic information after T

reciprocal of the variance of _, or

T

Z _2/ 2~ ColOz : ,.il;iqi°
i=l

tests, _ may be expressed by the

(3)
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Thus the inform._tion -onLribution of a test at

I(t) ~ _-t'/2_p_o2 •

t. = t is given by
1

C_)

Since this is max___ed at t O, where we have

I(o)~ 2/_o2 , (5)

the efficiency, def__ued as the relative information of an individual test at

stimulus level t, may be ".-ritten as

.t 2
E(t) m I(e)/I(O) ~ e /4pq • (6)

The function E(t) is tabulated below for selected values:

Itl 10E(t) i
, I

It may be noticed that the efficiency declines rapidly in the range

•75 < Itl < 2. Tests for which Itl > 3 are very inefficient in the long run,

although they may prcvide a large fractional increase in information early in

the experiment.

In order to derive an exoected value for E(t), we express it in a more explicit

form. It can be shown that the following expansions are convergent for all values

of t:
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- t7/33_h/_ + t9/3456_ - tll/4_E4_,_ + t13/599040_ ....

q = 1/2 - t/_ ÷ t316_ - t5140/_

+ t7/_rf_ - tg/3_56/f#+t!i/4224azr_- t13/599o_/_ + .-.. (8)

Therefore

pq = 1/4 - t2/2_ + t_/6x - 7t6/180_ + tS/14Ox

" 83tlO/756OOX + 73t12/4989 _0_ - 523t14/3027024Ox + "'" , (9)

E(t) ~ e'tZl(l-2t2/x+zt_l_-Tt6145x+t8/35_

- 85tlO/189OO_+73t12/1E474Ox-52}t14/7567560 X + --- )

and

We have fiually

+2
e" E(t) ~ 1 + 2t2/x - 2t4/3_ + 4t4/= 2 + 7t6/45_ - 8t6/_ 2

+ 8t6/x 3 . t8/35_ + 16t8/15_ 2 - 8t8/_ _ + 16t8/_ 4

+ 83tlO/18_cXX)x - 304tlO/94_ 2 + 68tlO/15_ 3 - 64tlO/_ 4

+ }zt_°/.5 . 7}t_z/_7_o= + ZZ}ztlZ/l_?5=8

- 356t12/189_ _ + 704t12/45= 4 _160tl2/_ 5 + 64t12/= 6

+ 525t14/7567560x - 296t14/17}25= 2 + 599t14/945=}

- 7_8ti_/9_5=4 + 48t!4/_ 5 _ 128_1_/x6 + 128t14/_ 7 + ..- .

(lO)

Cn)

In general, since _ and _ are _ukmown, we are uncertain as to just which

value of t :-e are testing at; let this uncertainty be represented by a density

f(t) ".'ithmean M and variance U. Since "_e are trying to test at x =

(t = C), and since _ is unbiased and asymptotically normal, we have



M=O

U = _ = O2(T)/O 2

Tb,en the expected test efficiency is given by

- f E(t)f(t)dt

~ f E(t) e-t2/2U dt

_ 1 f et2E_t) e -t2/2v dt
J UTI

usLug the substitution v = U/(2U+I).

(12) '

Because of (ii) this integral can be thought of as a sum (with coefficients

given by (ll)) of the even central _ __o_en_s, _n' of a normal distribution

with variance v. We have

from which it follows that _ = v, M = 3v2, M6 = 15v 3, M8 iC5v 4, _' = 945_= "lO '

Ml2 = 10395v 6, and MZ4 = 135135v 7. _T.en from (14) and (ll) we have
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--2 v + _,-'_- - v 4o l_om v5 ,_68o 84o ll2 2_v4

zol6o 3o_4oh v5
T-- + 7--j

554:_00 1626Z4 19580 IZ45Z 7__'h 6

,_5 + ----IF _3 + v152 12_J

856_7 ii16_44 6486480 17Z_ZSO
+ _5 x + =5 ,_

+ 172P728°_7J v7 + "'" ] /

~ [I 636620= ÷ • V+

+ .55_ 5 +

.579254v 2 + .560060v "5+ .548604v 4

.5542ZSv 6 + .55058ZvT]/_T . (16)

This function is tabulated below for selected values:

uloolo21o ilo -C l ooo1 .1 5
lo .o i15 .o' _o.o 14o.o tlOO.O

For small values of U, the approximation given by the first two terms of the

expansion,

is sufficiently accurate. For large values of

evaluation of equation (16) leads directly to

E-'_ 1.1_//U

U _'e have v = .5 and numerical

(zs)

2_7



t

At this poLut we have only an asymptotic fo:_ula (16) for computing the expected

efficiency of a new test, given c2. But denoting by EO the prior information

•th
iu terms of equivalent efficient tests, and by Ei the efficiency of the i

test, we have from our definition of the infoi%uation after T tests that

(19)

Then one can show by an elementary induction that

T

Z si (2o)IT" _a 2
_0

or
T

i:O

Equations (13), (16), and (21) can be used to asymptotically describe the growth

of information in sensitivity experiments.

Of these equations, only (13) is exact. Equation (21) is asymptotically valid

as %0 Ei goes to infinity, which will happen if and only if EO and/or T

become arbitrarily large. Equation (16) holds asymptotically on the (J+l) st

test as sJi=O E i goes to infinity, in which case U goes to zero. But note

that (16) and (El) do not give unreasonable results even for large values of U

and for small values of EO and T. Thus _e shall attempt to draw tentative

conclusions even in the latter cases.

The above asymptotic theory has been tested by means of a computer program for

simulating sensitivity experiments.

much more realistic than the value

by a factor of three.

The value of o2 given by this theory is

(_/2)O2/T, but still sometimes conservative
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In the following exa_.plewe see howslowly the h_dividual test efflciencies

increase in the course of a purely sequential sensitivity exper_zent. Note

that we never have to specify the individual test levels in this llne of

reasoning.

Example:

U ~ i5.71,

o_(1)~ 4.19J,

If E0 = .i0,

r_f%

and from t_o;,

then_,'ro=(ZZ), _(0) ~ 15.710z. From(13),

21 ~ .275. Continuing in this _-amuer, we have

U~ 4.19, _~ .486,

U ~ 1.81, E_ ~ .647,

u~1.o42,_ ~ .7_,

U ~ .696, E5 - "Sll'°

U ~ .512, E6 ~ .851,

u~ ._Ol, _ ~ .878,

u~ .3_8, _8~ ._,

U ~ .276, E9 ~ .911, etc.,
_ _ = 6.606 .

i-o

It should be noted that the above r_chinery pe_._its the characterization of ex-

periments in which the stress variable has an _.dependent "setting" error, such

as the projectile velocity in projectile penetration tests.* Let this setting

error be normally distributed _'ith mean 0 and variance o_ . Then the only
s

change in the above formulae is Lu the expression for U, which is now

o--c .,- .

Example: Let _ = 2o2 . Then the as_ptotlc efficiency of even a purely sequen-
s

tial design in this case is only 63%, since U ~ 2 (see table below Eq. (16)).

_ee Section III-AS.



C. Block-Sequential Designs (See Sections III-AI and III-BS)

To "stage" a "block-sequential" design, in which each block of tests is planned

after all previous test results have been analyzed, is to assign sample sizes

to each of a given number of blocks, given the total sample size T. The

"optimum" staging of a block-sequential sensitivity experir, ent is that staging

which produces the greatest expected gain in information. The asymptotic

methodology derived above may be used to compute optimu_ stagings for block-

sequential sensitivity experi_ents as a function of the amount of prior informa-

tion. These results are relatively __ndependent of EO, which is fortunate

because this parameter is in p__actice very difficult to evaluate. For example,

if our prior density on _ is uniform in [A_B], then

o (o)= (BA)2/12

But to compute

: (°) '

2
we must know _ , and such information is almost ai_ays unavailable.

Optimal stagings given by the above theory are not completely rigorous even for

large values of E0 and/or T, s__uce "_'ecompute expected infol_ation in the

seco_id stage as a function of expected info_=_tion in the first stage, rather

than in terms of the distribution of this inforr_tion. But the results are all

plausible and of practical value precisely because they are similar for E 0 = .02

and EO = P.O0, for example , in two-block experiments. Results of simulations of

some two-block designs are reported in the S£r_alation Section.

220



V-_2. MAX_,qTM LIKELIHOOD ESTI_t_,TES OF PARTIALLY ORDLRED PARAMETERS

a. Introduction

In Section IV-B6 two algorithms are described by _ich monotone estimates of

either partially or completely ordePed parameters can be found. A proof that

the first algorit_hm (method of reversals) produces maximum-llkelihood estimates

of completely ordered parameters can be found in Ref. _4. Conditions which

determine +v_E's (mcnotone maxlmum-likelihood estimates) have been derived by

C. van Eeden (Ref. 55) for partially ordered parameters, but specific techniques

for obta_ing them are not given. It will be sho%u% in this appendix that if the

method of reversals is applied to an ordering determined by the second algorithm

in Section IV-B6, the estimates are, in fact, M_E's.

b. Anal_,sis

Let XI, X2, •-. , Xk be k independent binomially distributed random variables

each specified by _he single parameter Qi (i = l, 2, .-. , k), respectively

(k represents the n +_mber of grid points in a multid_ensional grid design).

(1) (1) (1)
Further, to each Qi we associate n real numbers (xI , xz , .-. , x_ ),

which specify a level combination for n stimulus variables. We then consider

(i)
a function Q(Xl, x2, .-. , Xn) which takes on the value _ when xj = xj ,

J = l, 2, .'' , n and which is monotone nondecreasing in each of the separate

xj (j= l,2, "--, n).

Let 0 be the se_ of all orderings of [Qi] consistent with the monotonlclty

constraint on Q. If [Qi ] denotes _he set of M_C_E's, then it is clear that

[Qi] can be written in some nondecreasing order, O14, such that OM E O.
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Givenan ordering, Of, the _$G_E'scorresponding to that order are determined

by the method of reversals. The application of this algorithm results in a

"partitioning", P(O1) , whose sections must satisfy the following conditions:

(a) If Pl' a section of P(O1) , is written in any manner as two ordered sets

S i $2, then tI _ t2 (for definitions of these S's and t's see Section

(b) If the ordered sets SI S2 belong to different sections, then tI < t2.

(When these conditions are satisfied the MMLE's corresponding to the order 0l

are such that the estimates are constant within sections.)

Let A be the set of all orderlngs which satisfy the conditions of the algorithm

given in Section IV-B6. Then A c 0 and we shall show that for any A1, such

that A 1 E A, P(A l) = P(_).

A such that P(AI) = P(OM) , where as beforeTheorem i: There is an A1 %
is a _n_LE ordering.

Proof: If OM E A, then AI = 0M and the theorem is proved. If this is not

the case, then in 0M there are two adjacent independent subsets Sl and S2

such that the corresponding estimates tl, tz satisfy tI > t2. Let O* be

the ordering with S1 and Sz interchanged. By property (a) of the method of

reversals, S1 and S2 must be in the same section and P(O*) = P(OM). If

0* _ A, we continue _.uterchanglng independent subsets until flr.ally P(OM) = P(AI).

Lemma: If P(O*) has _ sections which we denote by PI' P2' .'. , P_ and if

a set of elements S1 is deleted from the set, S = (Pl' ... , Pi) where
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m

tl_ t and i < L, then the partitioning of Pi+l' "'" ' PL r,'=u%insunchanged.

The proof follows immediately from the properties of the method of reversals.

Theorem 2: Let A I and &Z be any two different orderings in A, then

P(A l) = P(A2).

Proof: Our proof will be by induction. If k = i, 2, the theorem follows

L_mediately. Assume it is true for i, 2, "-- , k-1. We use an indirect proof

to c_plete the inductlon. Suppose for k el_ments there are two different

partitions, PCAI) , P(A2) with sections given by

P(AI): PI1,P12'"'"'

P(h): P I'P 2'""' FZm

where wi%hout loss of generality we let _ g m. The proof for all _ = i, 2, 3, "'"

depends on using the lemr_; we will give details only for _ > 2.

Assume the sections PII and P21 have a set S1 of common elements so that

PII = Sl U Si

P21 = SI U S_

Then, since PII has le_s than k elements, it must have a unique partitioning.

TT.en it follows that _"I g t-_ and s£milarly t_ g t2. Delete set SI; by our

lemma the remaining sections are ungnanged and the partitioning must be unique

.e_. If S1 is the null set, we consider the set ofunless S1 is the null _ +

co.."r_onelements in Pll LJ P12 and P21 U P22" In the same _r_uer, either our

theorem is proved or Pll U P12 and Pzl U P22 have no elements in coumon.
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Continuing in this manner, we show that the first _-i partitions have no commog

elements and thus Pl_ must contain _-l partitions, _'hich is a contradiction.

The treat_ment of L = l, 2 is similar. This completes the proof.
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6

V.-B3. MIN_,b_l OVERLAPPING Sb_SET

a. Introduction

The minimum overlapoin_ subset (MOS) of a sample of sensitivity data is a subset

whose points are all on the "wrong" side of the average stimulus level for the

subset, while the points of its complement are all on the "right" side of this mean.

That is, the MOS consists of all the responses below its mean and all of the non-

responses above it. In this appendix we relate the mean an_ standard deviation of

this subset to the mean and standard deviation of the critical level density in a

special case, and use this result to motivate the use of the MOS in zore general

cases. We conclude by constructing the M_ and proving that the cor_tracted set

has thedesired properties.

b. The MOS of a Special Infinite Sampl%

Theorem I: Suppose we have a population of sensitivity data for _ich the test

stimulus density and the critical stimulus density are both the saze normal density

f(x) with mean _ and standard deviation ¢. Let M denote the subpopu!ation of

test levels at which the test results are "unexpected" (i.e., those stLmulus levels

above M at which there are no responses, and those stinulus levels below _ at

which there are responses). Then

i. One quarter of the p_rent population is in M,

2. _M = _, and

Proof: Let F denote the cumulative norzal distribution, where F'=f. _T..enthe

probability is F that a point below _ in the parent population is also in M,

and the probability is I-F that a point above _ in the parent population is

also in M. Hence the fraction of the parent population in M is
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P _(x)[1-F(x)]<Ix= X/4.f(x);(x)dx+

Then if f(x) denotes the density of M, we have

g(x) = 4f<_ 'if x _ _
-F , if x >

If we use the transformation y = 2_-x, so that f(y) = f(x),

we find

- [®xg(x)dx

I.I, --m

:",.[.r._ +..r
I.,V.

F(:)= l-F(y),

= _.

Finally, taking advantage of the symmetry of

find

2

--,l_Q

u,,

= 2 __. 4(x-i.i)(-c'2)fiF

U,

:-_°_[<=-'>"'--':-i'<_'+<:-_:>'>7
=,82 _ (fF-2f"f)

g, and using f' = -(x-p)f/_ 2,

: 82[118- 2712 I_.]

2( I)"= I_.2 rl .

we

*The recursion formula for the even central moments of g is actually

M2n+2 = (_+l)_M2n- (:_/,n.)ni2n+2
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I

Suppose we now have a finite sample of sensitivity data. Let _ and c denote

the estimates of _ and o_ If T denotes the MOS of the sample, then let

and ST denote the mean and standard deviation of the stimulus levels in T. Then

Theorem i makes it reasonable to use the approximations

where U and W are correction factors which should compensate for departure

from the ideal test stimulus density; this is the form of the estimators given

in Section IV-B2. As night be expected, W = i when v (the fraction of the

parent sample in T) is I/4; and U = 0 when the data in and near the MOS are

evenly divided between responses and nonresponses.

If all of the test levels are near _ then CT will be extremely small compared

to a, and v will be almost .5; if the test levels are scattered very widely

about _, then _T will be large compared to a, and v will be almost O.

This is the reasoning which leads to the correction factor

_ , v _ .s_ _v/.2_ for
W=

forv>.25.

c. The Construction of the MO_

We now provide a method for constructing T by first introducing a series of

associated sets, Tr, as follows:

Let xI _ x2 _ _... denote the stimulus levels corresponding to each and every

individual response, and let Yl _Y2 _Y3"'" denote the stimulus levels corres-

ponding to each and every nonresponse. Let TO = _ (the null set),

_o_ (xl÷Yl)/2'_d io- Jo= o
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We now define the sets T recursively.
r

Tr = (Xl,X2,...xi ,yl,Y2,...y. ), r _ O,
r Jr

denote the mean of T • Then we define
r

Suppose we have arrived at

at some point in our process. Let
r

Tr+ I = TrUZ r ,

where

Z

r

(x± +i)
r

(Xir+l'YJr+l)

¢

, if Xir+ i _ Xr but Y jr + i < Xr

, if yjr + i _i r but Xir+l>Xr

, if Xir+ 1 _ _r _yjr + i

if Xr K
' YJr+l < Xir+ I

Finally, when Z = _, then T = T .
r r

Theorem 2: The subset T constructed above is the unique MOS.

Proof: Since T = T when Z = _, the cozplement of T consists only of
r r

points on the "ri_it" side of _r = _T"

If T did not consist entirely of points on the "wrong" side of _T' then it

would follow that, for some K,

and yet

m

XiK+l > x r

(i.e., a response entered at one stage of the process but later no longer satisfied

the desired entry condition). But _r is a weighted average of _K and points to

the right of xi_+l, and so we have a contradiction.
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Thus T is an MOS, and we must show only its uniqueness.

also have the form

U = (Xl,X2,...Xis,Yl,Y2,---Yjs) •

There are essentially four simple cases to be treated here_

But any other MOS must

For example, if iS > ir and JS > Jr' we have, from the construction of T,

YJs < Xis'

of _o

and we cannot have both of these two points of U on the "wrong" side

If iS > ir and Js _ Jr' then

_U _ xiS _ Xis-I
"'" _xi +I >% '

r

_U > YJs+I _ _ -i _ _"'" YJr YJr

But if yjs+l,...yjr are deleted, the mean cannot be made larger than _, and

then adding Xir+l,...,X.xs cannot possibly drive the mean as high as Xis. There-

fore _ < Xis, a contradiction. The remaining cases are treated in a similar

manner.



V-B4. APPROXIFATEN_ER OFTESTSIN _LEX_tNDERDESIGNFORSMALL

In open-ended designs it is of interest to have some approximate idea of how many

tests will be necessary. An approximate upper bound for the average number of tests

required by the Alexander design for small _ (when the step size chosen is not

very small relative to the uncertanity in the initial guess of x ) can be fomnd

as follows:

Assume that a design has been completed and the lowest response was obtained at the

level LI. Then there will be sequences of levels below LI at which only non-

responses have occurred. From the rules of the Alexander design the last of these

sequences will be that which ends two levels below L1 and such that N nonresponses

have been observed in its associated zero-region. Here N can be found from the

expression

N

(1 - o = I-P
0

N :_ N° , NO an integer

No] + i , otherwise

where Po is soze prescribed probability. Thus the first sequence can involve

tests at not more than N levels. In the second sequence, the nonresponses from

the tests in the first sequence can be counted if they are in the appropriate zero

region. Thus, the zero region corresponding to a level N/2 steps below L1 will

contain at least N nonresponses. From the stopping rules the deszgL will te._inate

when a sequence ends two levels below LI. Thus, proceeding in this manner we see

that at levels below LI there can be a total of

N 2N

tests in all. (In evaluating this expression, _ must be replaced by

it is not an integer.

I_] + i, if
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In apFroximating the number of tests at levels above LI we use an a_slo_ous

procedure. In this case we consider how _any levels a sequence can climb before

a response should occur (with probability Po). In the first sequence, a response

N th
is expected before no more than N-levels have been used; in the second 5y the -_--

level, etc.

Thus cozbining these results we have that an expected upper bound, _, on the

average number of tests in the design is given by

(Thus N is roughly given by 2NlogN.) For example, for _ = .05, P = .5, we
o

have ] _76. The results of simulating this design under these condition _ppendix

V-C) indicated an average sample size of 45, although a few designs required as

many as IOO tests.

From the table given in Section III-B6, for _ = .O1, P = .5,
o

required. Thus for a design under these conditions, N _604.

an N of 69 is



V-B5. DERIVATIONOFDISCRImINatIONDESIGNS

Supposesensitivity tests are being conductedon two materials (e.g., two brands

of igniters), and supposewewish to prove that the two populations are really

not the samewithout makingany assumptionsabout their response functions. Let

L1 denote the likelihood of the samplefrom the first material, L2 denote the

likelihood of the samplefrom the secondmaterial, 5 denote the likelihood of

the joint sampleunder the null hypothesis that both responsefunctions are

identical. Then

X2 = -2 Ln A,

is asymptotically

large values of X 2.

a stimulus level, S,

where _ = _/LIL 2

_2-dlstributed, and a natural rejection test would be based on

Therefore, for discrimination purposes, we want to test at

such that E[X 2] is maximized.

Let Pl(S) and P3(S) denote the probability of a response from population I

at stimulus S, and the response probability under the null hypothesis, respec-

tively. Then a single response for population l, say, changes the w_lues of

from Ao to _oP3(S)/Pl(S), while a non-response changes _o to

loq3(S)/ql(S), where q = 1-p. _ne desired stimulus level, S, can then be found

by maximizing

Tl = Pl(S)[-2_{_oP3(S)/pl(S)]] + ql(S)[-2_{_oq3(S)/ql(S)]]

which is equivalent to maximizing

D1 = Pl_n(Pl/P3) + qlln(ql/q3) • (l)
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Suppose further that our two critical level distributions are normal with means

_I and _2 and standard deviations aI and _2' respectively. Then

_I(s) ! e-(S-_)2/2ol2
=z (s)

and a similar expression may be given for Z3(S).

then from (1) and (2) we have

If D is to be a maximum,

(2)

_'_= -Zl.tn(P3ql/q3P 1) - Z3(Pl/P3-ql/q 3) = 0 . (3)

This equation can be solved approximately as follows:

Let

A= _-._. ,= ,h-s.

Then

1 -_/2°12 1 -(b")2/252

[( b-,)21_ 2 _ ,2/o12]/2
Zl/Z3 = (=3/al) •

Let #°3 = _' _/_ = t, =3/Ol = r. Then

Zl/Z3 = r¢W2[ 1-2t + t2(1-r2)]/2 . (4)

Also, from expansions about _i and P3 we have for sufficiently small values

of ja1 and (_')/_F respectively.

Pl ---1/2 - ,.//2_ __ + ,3/6,/'_ _13 .

P3 --"1/2 + (A-¢)//_ _3 - (A-¢)3/6/2-W a33 "
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Therefore to the same order of approximation

pl/P3-ql/q3 --" - 4_ a1 -4(_¢)/2J_-_ _3 + 2c3/3_ a'n3

+ 2(5-_)31z2/#-W5Z-16(_-c)31(2,0Z12a3Z-16cC_-e)21(2,0Z12_1a32•

iu[(l+x)l(l-x)], we find to the same orderUsing the standard approximation for

of approximation,

m(p3qllq3pl)=-4¢12_ al + 4(_-¢)/_ _3

R - (Lno-_)l(c-_)---I +

_ 2 31z2v_%3

+ 16¢z13(2_)z125z_2(_.¢)3132_ 5 3+16(_-e)313(2.)31253.

G m pl/p 3, H - ql/q3, then

[32( k"¢)3/5 3+48 ¢( A-¢)2/c32 ci-16 3/013]13(2_) 312
" _4 dj,,2-. _ o"1 - 4(A-'¢)I__ %

Now if

2w2 2(l-t)3-t3T3+)tr(l-t) 2

= 1 - 3--_- tr + I - t "
(5)

Since R is strictly positive, its logarithm is defimd and we may therefore use

the elementary approximation log R E -l+R. Then from (3), (4), and (5), we find

2 Fi-2t+t2(i-r 2) 2 2(l-t)3-t3rZ+_$r(l-t) 2 _ 0 (6)
_nr + _ 2 - 3--_ tr*l-t J =

If r _ I, one iteration of the Newton method, starting at to = .20801, gives

t _ .20801 + 2.75194 (Znr)l_ + .16474 (l-r) (7)

For all practical purposes the term on the right nay be ignored, and (7) may be

rewritten as

t -.208+ 2.572""__rJ/_-,
opt

(8)
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or"

Sopt _-._92,1 + .2o8_ + 2._s2[o32I(_-,1)] _,(_3/_.1). (9)

This approximate result gives in closed form the next test level. However, if

the ex_eri=enter has the time, he may use the estimates of _ and a to

compute estimates of Pi' P2 p and P3 at various nearby stress levels to

get a _ore precise optimization through (I). He _ay do this for. both items,

and select the one which gives a greater D value; this is not always the item

with the smaller sample. However, testing the item with the smaller s__mple, as

recor_uended in Section IIIB-II, Phase II, leads to a sequence in which testing

is performed on alternating itens, a procedure which may be advantageous for

other reasons.
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V-B6. THE I_VERSE RESPONSE PROBLEM FOR THE C_,.UL&TIVE NORFLAL RESPONSE FUNCTION'

Suppose we have a mean response function, M(x), which is a normal cdf with

parameters _ and _, both unknown. Suppose we want to find that value

x = _ + k_ for which M(x ) = _, where _ is a response probability specified

in advance.

.th
If Li denotes the l stress level in an experiment of size N, and ri

denotes the corresponding response (i or O), then the sample likelihood is given

by

N ri l-r i
L = _ (Pi ql )'

i=l

where

ti =

z = (2n) "_ expC-t212),

ti

Pi = _ z dr, and

qi = l-Pl "

The maximum likelihood estimates of _ and c are the solution of the simultaneous

equations

_--_--= O, --=0.

I

From the Cramer-Rao bounds, and the asymptotic efficiency and unbiasedness of the

maximum likelihood estimators, it is known that the covariance matrix of these

estimates is asymptotic to
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• r
-z r_2L_ 7

L_2J

(:i=

rL__l
-z L_o J

It may be shown that

whero

Then

_..rL -?l,oi= ,
LI_; J

__.r-_-_-]:od._L_ J

r_7 c2/_
-z L _o2 j=

Q. # ¢_2-cz_/(%c2_Cl2)
, J •
-C 1 Co

and the variance of the est_J_ate of

Thus

-1

x is asymptotic to

_(_+ k;)/_ = (c2-2kCl+m2Co)/(CoC2-CZ2) .

Our goal is to minimize H. This will be only an asymptotic solution, since

only asymptotic to the variance of the esti=ate.

is
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Suppose now that NI of the N tests are at a stimulus _+tla and that N2_ N-N I

tests are at _+t2o. (Any possible set of values for Co , CI, and C2, includin_

the optimum combination, would be achieved by some set of values for tI, t2, and

NI, if not for the integer constraint on NI; but this constraint is asymptotical]

innocuous.) Then

HIo 2 = NlVlt12+N2V2t22-2k(NlVltl+N2V2t2)+k2(NlVl+N2V2 )

(NlVltl 2+ N2V2t22)(NIVI+N2V2)-(NIVItI+N2V2t2 )2

(tl-k)2 (t2-k)2

= N2V2(tl_t2)2 + NiVl(tl_t2)2 "

The value of NI which minimizes H is found by differentiating this expression

and is given by

: + ,t2_kl _ / •

For this value of Nl we have

•ftl-kl/ + It2-kl/  'l . f(tl,t 2)
= Itl_tz I " ,,

In order to find the (asymptotically) optimum values of tI and t2, there are

two fundamental cases to analyze: tI m t2 m k and tI m k _ t2. Both analyses

use local reasoning, but computer studies have verified that the solutions are

global optimums.
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Cas_ I: t 1 • t 2 • k

• "_ = k-t2 1 + i.__.+ tl-t2 _LnV1/_tl"

These partial derivatives are both zero if

tl = _t 2 E t,

in which case we find

t _ 1.5750360 ,

p _ .94238 ,

NIIN --".5 + .787518/k ,

= 1.6436k21/s.

Thus N(.5 + .787518/k) of the tests should be at _ + 1.5750360a, and

N(.5 - .787518/k) of the tests should be at _ - 1.5750360a. This solution corres-

ponds to values of k for which k _ -1.5750560. The solution in the case

k • tI • t2 is identical except that k m 1.5750360. Thus the above solution holds

whenever lkl _ 1.5750360.

Since we do not know _ and a, the best we can do is to find designs with _ + tim

and _ + t2a as limit points of convergent subsequences. Such a desi_nwill then be

asymptotic to an asymptotically optimal design, and will therefore still be asynptot-

ically optimal.

The above design gives a variance of i which is asymptotic to 1.6436k2a2/N,

whereas the Langlle design and the Bruceton design, with interval width equal to the
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standard deviation, are roughly only half as efficient, with variances asymptotic _o

(2.5+3.2k2)a2/N (Ref. 17, pp. 17, 18) and (2.0+3.8k2)o2/N (Ref. 28), respectively.

Case If: tI mk m t2

k-t2 1 - l_!_ tl-t2 _uV1/_tl__

h_ tl-k _ +

_t2- (tl-t2)2 [-4"_ _2

A tedious and uninteresting computation shows that the limits of both of these

derivatives are zero if both t 1 and t2 approach k. Thus the optimum solution

in this case is to take all of the tests at _ + ka, which is the only solution for

Ikl < 1.5750360. As before, this design is impossible to realize and must be re-

placed by a sequential parametric stochastic approximation to _ + ka.

The variance of the estimate is asymptotic to u2/Vk N. For k = O,

to an estimate of the distribution mean, we have V = 2/n and
o

H(_)N (_)_/_

which corresponds

But for the Langlie design, we have

E(_)~ 2._o2/N,

and for the Bruceton up-and-down design with spacing .67_ (very favorable circum-

stances for this design), we have (Ref. 28)

H(_)_ 1.85_/N .
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V-B7. RESPONSE DISTRIBUTION AT A SPECIFIED COMBINATION OF STIMULUS

VARIABLES IN T_E IBSENCE OF INTERACTION

In the nonparametric, noninteraetion, multivariate grid design (Section III-B9),

say with stimulus variables x, y, ..., w, the distribution at any level combination

is taken to be binomial with parameter

p--l-(l-p.)(l-py)...(l-p.),

where Px' Py' """' Pw are the probabilities of a response when only one stimulus

is applied. This result can be shown as follows.

Because of the definition of noninteraction we can think of the stimuli as applied

one at a time. The result will be the same as applying all stimuli simultaneously.

Let • be the first stiuulus applied; then the number of responses, _x' is

known to have a bino_.ial distribution

Prob [&::x In] -- ½'(n-_.), P. q. "

If exactly _x res?onses occur, then only the remaining n-_ nonresponses can

be affected by the second stimulus, y. The number of additional responses, _,

will again be binomially distributeds

Prob [lyln-).x] = Xy.!'('n-_-_)',' Py_Y "

If only the two stimuli were present, then the total number of responses

_xy = Ix + _y' is given by-

,'_A "1
&-=T._.



Prob (_xylm] = _. Prob (_xlnl' Prob (_yln-_]

+_ =_
• y xy

n _. n-k
V n! • •

= "_" _'x!(n-)'x)."Px qx
),=0

(n-_) ! _y-Xx n- _'xy

(½y-_),(n-_y),Py qy

n kx X -A

= (n-AxY)! qx qY ), =0 AX! (_xy_kx) " p X

xy
- xxy!(n-x )!' qx qy Xxi(Xxy-Xx): " Py

X

n! n-X _y

_•y_in-½y):(qxqy) •7 (pxm•py)

and since Px + qxPy + qxqy = I, this expression has the form of a binomial

distribution with parameter

P = Px + qxPy = I - qxqy.

If we continue applying the stimuli consecutively, we find that at any fixed com-

bination of stimulus levels a binomial distribution is generated, with parameter

p given by

p = i - qxqy ... qw '
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V-B8. DISTRIBUTIONOFRESPONSESDUETOANUNKNOWNSTIMULUSVARIABLE

_. Distribution of Responses

Assu=e that the unknown stimulus (y) may be at levels h' L2' "'" ' Lk and

that _he probabilities of beln_ at these levels are tl, t2, •.- , tk, respec-

lively. Then in n tests the number of tests, Zr, conducted at each level,

Lr, will have the multinnmial distribution

n! Zl _ Zk
T(Zl, zz, -.. , Zk) = Zl!Zzt...zk! tI t 2 ... tk ,

(I)

where

ktr= 1 sa_ Zr=n

r--I r=l

Let the probability of a response for y at level L
r

bility of sr responses in zr tests is given by

be Pr; then the proba-

Zr! s r _r'Sr

If zr (r = i, Z, ... , k) is given, then the probability of a total of v

responses can be expressed by

P{v[z x, z 2, ...

_v r=l

zr! sr _r-Sr
Srt(Zr-Sr) ! Pr

s_z
r r

arxl the Joint distribution of Zlj zz, ... , zk and V is

k

I _ Zr! Sr Zr'S_(zl,z2,"", Zr) Sr,CZr-Sr),Pr % r
Esr=v r=l

s_z
r r
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We may now find the joint distribution, g, of Zl, z2, ".. , zk and k,

where k is the number of responses when both stimuli are applied. }{ere the

conT.rolled stim_ulus is assigned to be at some fixed level for which the proba-

bility of failure is Px" One obtains

g(_,z_,z2, ..., zk)=T(zl, z2, ..., zk) .

k

[ ]......
V=O _r--V r=-l

s _z
r r

Eliminating Zl, z2, .'-

for k:

, zk by summation, we have the marginal distribution

k
_.z=n

r=l r

g(k, zl, z2, "", zk)

We now show that the mean and variance of f(k) are given by

(2)

El(k) = npx + nc_x_t2r ,

2 8
Df(k) : nPxQ x ÷ nqx(qx-Px)rtrP r - nqx_trP r

(-3)

After a series of n tests, let the number of tests at each level, Lr, be

given by zr. Then the number of responses, k, has a Poisson generalized

binomial distribution,* _(k[zi, z2, ... , Zk) , with mean and variance given by
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k

l

k

D_(k) = Z Zr(Px+qxPr)(qxqr)
1

(_)

The probability of any set zI, z2, "'" , zk is given by

n!

T(z I, z2, -.- , zk) = Zl!Zz!...Zk !

where
k k

tr = i and Z z =nr

i i

zI zkz 2
tl _2 """ tk '

Then the distribution (2) can be written

T(z l, z2, "'" , zk) • ¢(_IZl, ... , zk)

The mean and variance are defined by

n

z_Cx)= Z xf(x)
)=O

and
n

k=O

_o= (6)and (7)_e zin_

n

Ef(_)= _-_ T(zl, z_,--.,_)_(_I_l,"","k)
k=O Ezr=n

n

Zz =n k=-O
r

(5)

(6)

(7)

(8)
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From (4)

n

I X_(XIz I, "'"
k=O

J zk) =

k

I Zr(Px+qxP r)

Substituting in (8) we have

z_(_)= _ T(zu

ZZr=n

k

' Zk) I Zr(Px+qxPr)

r=l

k

= I (Px+qxPr) I

r=l _Zr=n

T( "'" k)zr Zl, , z

k

I i zl zk• nt tl ... tk
= (Px+qxPr) zr Zl_Z21...Zkt

r=l Zz =n
r

k I zI z -i zk= n l(px+qxPr)tr (n-l)! tI ... t r ... tk
Zlt ...(Zr-I )tZkt r

r=l ?z =n
r

By inspection we see that the ir_.er surds_and is a multinomial distribution and

therefore the sum is 1. Thus

k

Zf(k) = n I tr(Px+qxPr)

r=-i

k

= nPx + nqx I trpr

r=l

Ln the same manner, one kay sho%" %hat
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k

b. Comparison of Variances

Consider an experimen= _.nwhich

fixed level of a knc_.TM- stimulus,

s responses occur in n tests at a single

x. Then either of the following assumptions

can be made:

Ho: The experirent :ms _ivariate with only x present.

Hl: An additional :rL__no_ stimulus, y, as well as known stimulus,

present.

X_ W_S

Under Ho, an es_iza_e of the mean k can be dete_ined from the associated

binomial distribution by means of _ = s. Then the binomial parameter Pl is

estimated by

Pl =

and the variance _2 by
O

0 - i i "

For the distribution (2), _'hich is implied by HI, _he mean

are given by (5). _hen an estimate of the parameter Px

citly by

(9)

(zo)

k and variance

can be given impli-

k = np x + n_.x Ztjr

2 will then be given directly by
and an estirate of the variance _l

"2 =k(_X._X ) _t_r r.o-._2 _t:_ z°l =nlxk ÷ " "

(ii)

(Iz)
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Thusfrom (9) and (ii) the parametersof the two distributions satisfy the

relationship

(13)

Now (i0) can be written in the form

Oo = n(Px+ t r l- x- t r

= n!_x_x + n_[x(_x-Px)ZtrPr-n_i_C_r_r )2

and we can now directly ccmpare our two variances.

(l_)

Fro:(lZ)a_a (14)we _a_e

20 - O'l:2 n_ _tr_2r - n_(_t_r)2

-2 (P rPr: nqx Ztr r_Zt )2 > 0

We thus have the interesting result that the presence of an unknown stimulus

results in a smaller variance.
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V-Bg..._"_='_ FOR _[dLUF'._IATE E._Pr.._ -_N2S WIqH INTERACTING STIMULI

Introduc%ion

Problems of general interest in _uivariate sensitivity experiments are the

dete_--.ina_icn of response functions and the inverse response problem. The

analogous problems _hen there are several stimulus variables are the deter-

mina[icn cf response surfaces and the determination of equal-probability

contour s_rfaces, respectively. In the former case, if we have n stimulus

or s%ress %_-riables Xl, x2, .-- , x then we seek an (n+l)-dimensionaln

rcspcnse surface

z = Z(Xl, x2, .-. , Xn) (1)

where z is the probability of a response. In the latter situation we wish

to find a contour functicn, f_(x I, x2, ''- , Xn) such that for a given a_

Prob{f_ionresponseo_ f_(xr x_,.. , x) : O]: a.

By L,:posing conditions cn (!) '*e will determine both response surfaces and

contour surfaces. To s fmplify the notation the case of two stress variables,

x and y, will be considered; the methods presented can be extended to any

number of variables.
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The response surface (i) will, at first, be assumed to satisfy the condition

that for any fixed x, say xo, or fixed y, say YO' all the conditional

dis tr ib ut ions

z = z(x, YO)

z = z(×0,y)

(2)

are of the same form, but with different parameters. ?_ais condition will later

be relaxed to hold only for xO = O and YO = O.

Normal Conditional Distributions

If the distributions in (2) are assumed to be cumulative normal with parameters

_(y0) , _(yo) and _(Xo) , :(Xo) , respectively, then the response surface (1)

can be written in two equivalent ways:

Xo-_Cyo) yo-_(xo)
OCyo) _(xo)

i f -._t2 I fz= _7_ e dt=7_

_2-. t

e " dt . (3)
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It follows frcm (3) that

_o-_Cyo) yo-,,(:=o)
°(Yo; = "'(=o_ (W

for any x 0 and YO" If ve consider the identity (4) for the four sets of

(xO_Yo) _lues (0,0), (x,O), (O,y), and (x,y) then bya_ebraic e14mlnatiou

from the four resulting equations it can be shown that

(5)

Since (5) :'_=t"hold for any values of x and y it follows that

_ Y i I = =
I 1 B 1 1

for some cozstant B. Letting o(O) = a, 7(0) = v we have therefore

oCy)=
Bay+1

,(_) = T
BTx+l

(6)

Let F(O) = M and v(O) = v, then frcm (4) anl (6) we obtain the. adaltional

relationship=

a Box+l "

Our resccnse surface (3) can now be %Titten in the form

1 4t .= = zYW e._tz

(7)

(8)
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The nol_nl surface defined by (8) be!or_s to a class, C, of more general

response surfaces satisfyi,_ (2) which are of the form

z = z(u)

(9)
u = Axy+bx+ cy+d

where A is an interaction parameter and b) e, and d depend on the yar_.meters

of the assumed underlying distribution. For this class of surfaces it is clear

that the equal probability contours are all hyperbolas. In _artfcular for normal

conditional distributions we have from (8) that the p-contour is the hyperbolm

x Z v
----K_=O ,Bxy + _ + _ ._

where _ is the standard no_-mal deviate exceeded with probability l-p.

In deriving (8) it is assu_ed that (4) is satisfied for all x0 and YO" In

particular, if Xo = YO = 0 it zust follo_ that _o- •v This condition is not

as restrictive as it seems. If for x = 0 and y = 0 our cumulative normal

distributions are kno_m and have parameters Vl, vI and _I' °l respectively

I,__I
but _lol_ xl ' ve can consider the translated variable y' = y + d. Then the

cumulative distribution of y' is no._.l with parameters vI + d, xl" Let

h " vl' then the variables x and y' have distributicns vhich satisfy

the condition. If our dlstributlcns are tuuknovn but ther_ is reason to believe

v
that _ _ _ then the translation parameter, d, must also be estimated.

Other Conditional Distributions

It has been shorn that if the conditional distributions satisfying (2) are eumula-

tlve nor_m.l, then the rezponse surface belc_s to the class of surfaces given by
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"(_). _e shall now verify that several other conditional distributions satisfying

(Z) have response surfaces belonging to the same class.

Uniform Conditional Distributions

Consider the response surface defined in the first octant By

z = I_+ ax +by O_:z _l

(1o}
z - 1 otherwise

then in the region, R, where 0 _ z _I, (lO) belongs to C. If we let

x = xo, a constant, then

_(_o'y) = _(B_O+b)+ _0

which has a unifom distribution in R. Since we obtain a similar result when

y is fixed it follows that in R (10) satisfies (Z) with uniform conditional

dis tributions.

If we let the uniform distributions corresponding to x = O and y = 0

in R be given by

_(O,y)=

then we can express a and b in terms of the distribution parameters

mR . Thus our _-contour becomes

p = D_z+_x+_zy

for Z

an_

where D is an interaction parameter.
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Exponential Ccnditiona! Distributions

Next we consider the m_mber of C

z = 1 - e -(Exy+ax+by)

given by

express a

z(x,O) and

in the form

(11)

It is easily seen that the condition,1 distributions satisfying (2) are exponen-

tial. As in the previous cases E will be sn interaction parameter and we shall

and b in terms of the para_ueters of the conditional distributions

z(O,y). Since these are _._a to be exponential they can be written

z(x,O) = i- •"¢x

z(O,y) =" i- e'TY

with_arar.eters

given by

and Y, respectively. Our hyperbolic p-contour then is

Zxy +_x + ?y = - Zn(l-p) .

Weibu!l Conditional Distributions

with Common Shape. Parameter

If we consider the response sua'face belonging to C of the form

z = t - •"(_'_J'+a_+hy)x

we are led to Weibull conditional distributions satisfying (2) which have a common

shape parameter, k. In this case again the equal probability contours are

hyperboll@.
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No-lnteraction Conditions

It would be desirable to determine a value for the interaction parameter_ B_

under each of the previouslymade distrlbutio_mlassumptions whlchwould reduce

the problem to a zodel vithout Interactions. This can only be done for the

exponential and the uniform distributions by setting C = 0 and D = -mlm2_

respectively. For norr_l cczdition_l distributions lettln_ B = 0 results in

o(y) = o and _(x) = _. Thus the interaction is of a siz21enature in that only

the zeans of the two distribution_ are affected by each other's stimulus levels.

More General Response Surfaces

!m all of the cases considered the response surface _-as derived under the assump-

tion that all the conditional distributions for an_ fixed x or y were of a

given form. Now, we will relax the condition to require that only two conditional

distributions (those for x = 0 and y = O) be of the same given form. Our

respcnse surfaces viii now belong to a more genereA class. The following model

_p_arent!y describes the most general surface of this class

z = z(_

u = ax+by+ c+Axy+xy_(x,y)

where _(x,O) and _(O,y) are finite. ._T.eidentity of the conditional distri-

butions at x = O_ y = 0 is assured in this model. In particular, consider the

•response surface
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_+_xy . Yv+_xy+xy_(x,y)

I f e½t2 dt .

For x = 0 and y = 0 we obtain the conditional distributions

), v

I / -½c2 dt

x___
a o

z(_,o) = _l / e-_2
-m

dt

which are both of _he sar.e form, i.e., c_mr_ative normal, but if x = x0 _ O or

Y = YO _ O, the distributions are not necessarily c_zu_ulative norm_al.

By means of the fttnction _(x,y) in this more general model, several interaction

parameters can be introduced.
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V-C SIEULATION PROGRAM DESCRIPTION .AND RESULTS

a. Introduction

Simulation of the design, test, and analysis phases of numerous types of sensitivity

experiments has been performed by means of a general purpose, F_RTRAN II computer

program,coded for the IBM 7094. To date it has been used to simulate the Bartlett,

run-down, 20-ZIL, block sequential, Alexander, and Rothman designs. Response functions

which have been used in conjunction with these designs include the cumulative normal

and cumulative uniform, those of Odell (Ref. 8 ), and several special functions.

Eaxi_um-likelihood estimation, predicated on the normal response function, and the

method of reversals are the analysis techniques which have received the most extensive

evaluation.

A =odular concept has been employed in coding the program, which consists of a

relatively small main program and a large number of specialized subroutines. These

routines _ay be categorized roughly as design, response function, analysis, or

utility subroutines. In the flow diagram of the main program (Fig. 1 ), five

SUBROUTINE Call statements are indicated. Three of these subroutines (EXPDES,

_ANR, and _NALYZ) are essentially "buffer" routines whose function is to call the

specific routine required to implement, respectively, the particular experimental

design, response function, or analysis specified by means of input control variables.

The re_aining two routines, PRINT and PLOT, are utility routines which handle program

output. Utilization of a modular structure has made it possible to provide a wide

range of design-response function combinations and to facilitate program growth

(addition, deletion, or modification of subroutines to implement different types of

designs, etc.).
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Fig. I. Flow Diagram of Sensitivity Experiment
Simulation Main Program
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b. General Program Capabilities

A maximum of I00 simulations, each consisting of up to 1024 tests, may be processed

as a single data case (i.e., one specific combination of design, response function,

and analysis). Results over the desired number of simulations are cumulatively ana-

lyzed at test numbers which are represented by _, for any specified values of k

greater than one and less than or equal to I0. Al_ternatively, analysis may be started

when some other specified minimum number of tests have been completed. Results

from a maximum of nine analyses may be stored for printout at the completion of the

data case. The present program is limited to situations in which no more than two

response function quantities are to be estimated.

c. Experimental Design Simulatio_

Sensitivity experimental design methods which at present may be simulated with the

program are the Bartlett, run-down, 20-ZIL, block sequential, Alexander, and Rothman

designs. Each of these is implemented by a separate subroutine called by subroutine

EXPDES. A feature provided in each of these routines is the randomization of the

first test level about an initial input mean level using a standard derivation

which is furnished as program input; this device corresponds to the "first guess"

made in actual testing. Subsequent test levels are furaished by the design routine

on the basis of the programmed design criteria.

4@ Simulation of Testin_

Sensitivity testing is simulated by the program in the following manner. Given a

stress level furnished by the design routine, the corresponding response value,

BETA, is computed by the appropriate response function routine. Then BETA is

tested against ALPHA, a random number (uniformly distributed in [O,l])generated

within the program, yielding either a response or a nonresponse on the given test.
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Nine response function are available in the sensitivity experiment simulation pro-

gram, each implemented by a separate routine called for through subroutine MEAn.

These response functions are as followos

1. cumulative normal; _ - Ot a - •

2. cumulative uniform; x, 0 • • _ l

3. The five functions given by Odeil (Re£. 8)

(a) •÷ 0,• •1

4.

_4x 2, 0 _ • •
(b) [l_(•_,)2/_ ' _ • •, •

_/2x2, 0 •• •,}
(C) (i_2(i_x)2 * ½ •• •1

f4x2/3, o•••

(d)ll._(z_x)2 ' _ • • , x

(e) x4 , 0 _:x •l

Two special function whose property of interest is that. at zero stress level

(_I(0) = .5 in both cases), the derivatives of these function are zero and

infinity, respectively,

(a) .5 + x5, -.87056 •• •.87056

.5, x = 0
1

2+1x_-'2 ' • < 0
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e. Analysis Procedure s

At the time of each analysis the results of J simulations, each consisting of 2k

tests (2 _ k _ i0), are available in core storage. For each simulation, estimates

of the desired parameters based on these 2k tests are computed. Various character-

istics of the response function can be estimated, e.g., the stimulus levels corres-

ponding to the i% and 0.1% response levels, or the mean and standard derivation of

the distribution.

From these estimates the program then computes, over the J simulations, the mean,

median, standard error, and maximum and minimum values for each parameter estimate.

These are then printed out in the analysis summary along with the true value of each

parameter. When there are two parameters, their sample covariance matrix is also

provided. Several examples of this output are given in the following section.

Maximum-likelihood estimation predicated on the cumulative normal response function

(Section IV-B1) and the method of reversals (Section IV-B6) are the two types of

analysis which have been used most extensively within the sensitivity experiment

simulation program. The analysis method used and the parameters estimated for each

type of design are shown in Table 3.

Maximum-likelihood estimation is implemented within the simulation program by several

coordinated subroutines. An independent program version of these subroutine_ "MLE m,

has been formulated for general usage. Contained within VIE are the minimum over-

lapping subset (Section IV-B2) and two-subset (Section IV-B3) methods of obtaining

initial guesses, prior to entering the iterative phase of the maximum-likelihood

estimation procedure. A listing of this program, together with sample data input

sheets may be found in Appendix V-A.
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The method of reversals is implemented within the simulation program by subroutine,

"MOR u. A listing of subroutine MOR is included in Appendix V-A. Application of

subroutine EOR outside the simulation program may be accomplished simply by coding

a small main program to furnish data to this routine and print its results.

Block Sequential

Two Blocks: (mI, m2)

Analysis

20 ZIL

(3 replications)

Maximum Likelihood
Estimates Predicated

on Normal cdf Response

Parameter 1

mean (_)

Parameter 2

Standard Dew. (_)

Run down (2OO) ma (-) x.01(=-2.326_)x.001(.-3.090_)

Z.ol(=-2.326_)

Bartlett

(-)
or Level below

lowest response

_(-)

Method of Reversals

(MOR) with linear

interpolation

Metho_ of Reversals

(MOR) using centers

of approximate 50_

confidence intervals

Alexander

or

Safe Firing
Level (level

below lowest

response)

*.ol(=-2.326_)

xRothman

X.ooiG-3.ogoo)

or

X.o1222(_-2*25a)

X.ooz(_.-_.ogo,.,)

Required Sample
Size

Table 3. Summary of Simulations
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fo Results of Simulations

The computer output summary pages for the simulations are ordered primarily

according to the sensitivity design being evaluated, as in the above table. Each

set of results for a design is ordered in turn according to response functions,

as in the table of these functions given above.

The sample sizes are not given in the summary pages if the particular simulated

experiments were actually terminated.

The 2OZIL design replicated three times generally takes about i00-Ii0 tests.

Thus if sample size 64 is given, probably none of the simulated experiments were

_ctually finished, whereas if sample size 128 is given, almost all of the simu-

lations were actually finished at a smaller sample size.

In the following tables the sample varisnces of the estimators over each set of

sim_lations are summarized and compared with the asymptotic or approximate

minimum for all inverse response problems in which the (known or unknown) re-

sponse function is cumulative normal. Simulations for other response functions

would be evaluated in the same way, using the methods of Sections III-A4, 5.
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Block Sequential Design for 50%

Cumulative Normal inverse Response Problem

Design
(size of first block

size of second block)

(1, 2)

(2, i)

(i, 4)

(2, 3)

(3, 2)

(8, 24)

Prior

information

2

.02

Asymptotic
minimum

.52

.52

.52

.02

"Growth of

infoz-.ation"

minimum

Actual

variance

in simulations

.351 .45

2.0 8.8

•353 .42

2.2

.255

1.1

.254

1.0

7.5

.41

4.9

.34

3.3

.29.255

3.2

.080

.52

2 .314

.02 .314

2 .314

.02 .314

2 .314

.02 .314

2 .049

.02 .049

1.1

.051

.091 .28
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Rundown Design (N = 200),

20ZIL Design (N = 125, roughly), and

Bartlett Design for 1% and .1% Cumulative Normal Inverse Response Problem

Asymptotic minimum Actual Asymptotic
Prior for 1% problem variance minimum for Actual variance

Design _ (8.89c2/N) of 1% .1% problem of 1% estimator

estimator (15.69_2/N) in simulations

Rundown

A= .5

Rundown

A= 1.0

.044 .29 .O78

2 .044 .27 •078

20ZIL

A = 1.0 .2 .071 .22 .13

20ZIL

A = o5 .2 .071 .18 .13

2ozIL •
A = 1.O 1 .071 .19 .13

20ZIL

a = .5 I .071 .14 .13

Bartlett _N

32

64

128

256

[512

[1024

.2

.2

A= .5 .28

.14

.069

.035

.017

.0087

.28

.14

.069

.O35

.017

.0087

Bartlett

A=I.O

.62

.25

.Ii

•070

.036

.025

.64

.23

.13

.074

.059

.065

32

64

128

256

,,512

1024

.49

.25

.12

.061

.031

.015

.49

.25

.12

.061

.031

.015

.63

.57

.57

.43

.49

.37

1.4

.63

.27

.18

.086

.050

1.5

.58

.31

.17

.13

.097
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Alexander Design and Rothman Design for Nonparametric

50%, 5%, and L_ Inverse Response Problems When Response Function is

Actually Cumulative Normal

Design

Alexander (•5)

A= .1

Alexander (-5)
&=l

_ot_ (.5)

Alexander (.05)
= .O25

Rot hr_an (.05)

Alexander (.05)

= .25

Rot_n (.OS)

Rot_ (•Ol)

_ot_ (.Ol).

Fixed

or median Actual variance

Prior required t of 50% estimator
sample size in simulations

1

1

10

i0

1

10

10

Asymptotic minimum
for 50% problem (_C2/2N)

17 •092

16 .O98

14 .II

16 .O98

Asymptotic minimum for

5% problem (4.46_/N)

256

256

•14 _H'

.15

.39

.38

Actual variance

of 5% estimator

in simulations

62 .072 .i0

64 .O7O .O92

65 .069 .23

64 _ .070 .14

Asymptotic minimum for
1% problem (13.91o2/N)

Actual variance

of I% estimator

in simulations

i

I0

*It is believed that (estimator error)2(required sample size) is better appF_xi-
2 emated by (estimator error) (m dian required s&mple size) than by (est. err.) z '

(req. sam. size).

**Of course, the estimators would be better if the experimentor made use of the

i_pothesis of normality.
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Footnotes (continued)

***The term +i.167w(c_-_ r) in the Rothman design is responsible for this anomaly.

For very large sample sizes the coefficient should be changed to i/M'(x_;

' ) should be estimated from a "local" curve-fit of the data.
the quantity M (x ,

At any rate, since M (x) = .02668 in this case, the simulations with the

"head start" (w = i) eventually had too small step-sizes to "reach m x.Ol;

almost all of the variance of .17 in the table was due to a bias of .39.
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